--- language: - en license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:3853 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: BAAI/bge-base-en-v1.5 datasets: [] metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 widget: - source_sentence: '"BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS" < "BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS"' sentences: - What is the primary concept that the Discovery Server mechanism uses from the RTPS protocol? - What is the default state of the Verbosity Level component in the logging module? - What is the consequence of having a DataWriter kind that is lower than the DataReader kind in terms of DestinationOrderQosPolicy? - source_sentence: '+-----------------------------------------+-------------------------+--------------------------------------------------------+ | Data Member Name | Type | Default Value | |=========================================|=========================|========================================================| | "kind" | DurabilityQosPolicyKind | "VOLATILE_DURABILITY_QOS" for DataReaders | | | | "TRANSIENT_LOCAL_DURABILITY_QOS" for DataWriters | +-----------------------------------------+-------------------------+--------------------------------------------------------+' sentences: - What is the default value of the "kind" data member for a DataReader in the DurabilityQoSPolicy? - What is the main concept of the SQL-like filter syntax used in ContentFilteredTopic API? - What is the purpose of the "" value in the QoS configuration? - source_sentence: " git clone https://github.com/eProsima/Fast-DDS.git && cd\ \ Fast-DDS\n WORKSPACE=$PWD" sentences: - What is the primary function of the ThreadSettings parameter in the context of Fast DDS thread creation? - What is the primary requirement for installing eProsima Fast DDS library on QNX 7.1 from sources? - What's the purpose of the "max_handshake_requests" property in the context of authentication handshake settings? - source_sentence: 'This QoS Policy allows the configuration of the wire protocol. See "WireProtocolConfigQos".' sentences: - What is the primary purpose of the WireProtocolConfigQos policy in a DDS (Data Distribution Service) system? - What determines when a DataWriter sends consecutive liveliness messages, according to the LivelinessQosPolicy? - What is the purpose of the LivelinessQosPolicy in a DataReader's QoS settings? - source_sentence: "* \"AUTOMATIC_LIVELINESS_QOS\": The service takes the responsibility\ \ for\n renewing the leases at the required rates, as long as the local\n process\ \ where the participant is running and the link connecting it\n to remote participants\ \ exists, the entities within the remote\n participant will be considered alive.\ \ This kind is suitable for\n applications that only need to detect whether a\ \ remote application\n is still running." sentences: - What is the primary mechanism used by the service to ensure that a particular entity on the network remains considered "alive" when using the LivelinessQosPolicy with the "AUTOMATIC_ LIVELINESS_ QOS" kind? - What is the purpose of creating a "DomainParticipant" in the context of monitoring application development? - What is the purpose of loading an XML profiles file before creating entities in Fast DDS? pipeline_tag: sentence-similarity model-index: - name: Fine tuning poc1-5e results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.3333333333333333 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.49184149184149184 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5524475524475524 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6247086247086248 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3333333333333333 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.16394716394716394 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.11048951048951047 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06247086247086246 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3333333333333333 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.49184149184149184 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5524475524475524 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6247086247086248 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4719611229721751 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4239057239057238 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.43117995796594344 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.331002331002331 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.48717948717948717 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5454545454545454 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.62004662004662 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.331002331002331 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.16239316239316237 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.10909090909090909 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.062004662004662 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.331002331002331 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.48717948717948717 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5454545454545454 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.62004662004662 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.46621244210597373 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4178830428830428 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.42502313070898473 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.31002331002331 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.4731934731934732 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5431235431235432 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6083916083916084 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.31002331002331 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1577311577311577 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1086247086247086 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.060839160839160834 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.31002331002331 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.4731934731934732 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5431235431235432 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6083916083916084 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4519785373832247 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4023217523217523 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4106739429542078 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.30303030303030304 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.46386946386946387 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5268065268065268 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5967365967365967 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.30303030303030304 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.15462315462315462 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.10536130536130535 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05967365967365966 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.30303030303030304 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.46386946386946387 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5268065268065268 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5967365967365967 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.44299689615589044 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.39438801938801926 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4031610579311292 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.27972027972027974 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.4289044289044289 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.49417249417249415 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5641025641025641 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.27972027972027974 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.14296814296814295 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.09883449883449884 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05641025641025641 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.27972027972027974 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.4289044289044289 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.49417249417249415 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5641025641025641 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.41745494156327173 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.37105672105672094 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.3800930218379113 name: Cosine Map@100 --- # Fine tuning poc1-5e This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("cferreiragonz/bge-base-fastdds-questions-5b-epochs") # Run inference sentences = [ '* "AUTOMATIC_LIVELINESS_QOS": The service takes the responsibility for\n renewing the leases at the required rates, as long as the local\n process where the participant is running and the link connecting it\n to remote participants exists, the entities within the remote\n participant will be considered alive. This kind is suitable for\n applications that only need to detect whether a remote application\n is still running.', 'What is the primary mechanism used by the service to ensure that a particular entity on the network remains considered "alive" when using the LivelinessQosPolicy with the "AUTOMATIC_ LIVELINESS_ QOS" kind?', 'What is the purpose of loading an XML profiles file before creating entities in Fast DDS?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3333 | | cosine_accuracy@3 | 0.4918 | | cosine_accuracy@5 | 0.5524 | | cosine_accuracy@10 | 0.6247 | | cosine_precision@1 | 0.3333 | | cosine_precision@3 | 0.1639 | | cosine_precision@5 | 0.1105 | | cosine_precision@10 | 0.0625 | | cosine_recall@1 | 0.3333 | | cosine_recall@3 | 0.4918 | | cosine_recall@5 | 0.5524 | | cosine_recall@10 | 0.6247 | | cosine_ndcg@10 | 0.472 | | cosine_mrr@10 | 0.4239 | | **cosine_map@100** | **0.4312** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:----------| | cosine_accuracy@1 | 0.331 | | cosine_accuracy@3 | 0.4872 | | cosine_accuracy@5 | 0.5455 | | cosine_accuracy@10 | 0.62 | | cosine_precision@1 | 0.331 | | cosine_precision@3 | 0.1624 | | cosine_precision@5 | 0.1091 | | cosine_precision@10 | 0.062 | | cosine_recall@1 | 0.331 | | cosine_recall@3 | 0.4872 | | cosine_recall@5 | 0.5455 | | cosine_recall@10 | 0.62 | | cosine_ndcg@10 | 0.4662 | | cosine_mrr@10 | 0.4179 | | **cosine_map@100** | **0.425** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.31 | | cosine_accuracy@3 | 0.4732 | | cosine_accuracy@5 | 0.5431 | | cosine_accuracy@10 | 0.6084 | | cosine_precision@1 | 0.31 | | cosine_precision@3 | 0.1577 | | cosine_precision@5 | 0.1086 | | cosine_precision@10 | 0.0608 | | cosine_recall@1 | 0.31 | | cosine_recall@3 | 0.4732 | | cosine_recall@5 | 0.5431 | | cosine_recall@10 | 0.6084 | | cosine_ndcg@10 | 0.452 | | cosine_mrr@10 | 0.4023 | | **cosine_map@100** | **0.4107** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.303 | | cosine_accuracy@3 | 0.4639 | | cosine_accuracy@5 | 0.5268 | | cosine_accuracy@10 | 0.5967 | | cosine_precision@1 | 0.303 | | cosine_precision@3 | 0.1546 | | cosine_precision@5 | 0.1054 | | cosine_precision@10 | 0.0597 | | cosine_recall@1 | 0.303 | | cosine_recall@3 | 0.4639 | | cosine_recall@5 | 0.5268 | | cosine_recall@10 | 0.5967 | | cosine_ndcg@10 | 0.443 | | cosine_mrr@10 | 0.3944 | | **cosine_map@100** | **0.4032** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.2797 | | cosine_accuracy@3 | 0.4289 | | cosine_accuracy@5 | 0.4942 | | cosine_accuracy@10 | 0.5641 | | cosine_precision@1 | 0.2797 | | cosine_precision@3 | 0.143 | | cosine_precision@5 | 0.0988 | | cosine_precision@10 | 0.0564 | | cosine_recall@1 | 0.2797 | | cosine_recall@3 | 0.4289 | | cosine_recall@5 | 0.4942 | | cosine_recall@10 | 0.5641 | | cosine_ndcg@10 | 0.4175 | | cosine_mrr@10 | 0.3711 | | **cosine_map@100** | **0.3801** | ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 5 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `fp16`: True - `tf32`: False - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: False - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.6639 | 10 | 5.0927 | - | - | - | - | - | | 0.9959 | 15 | - | 0.3916 | 0.3898 | 0.4021 | 0.3546 | 0.4027 | | 1.3278 | 20 | 3.3958 | - | - | - | - | - | | 1.9917 | 30 | 2.6034 | 0.3893 | 0.4034 | 0.4163 | 0.3719 | 0.4222 | | 2.6556 | 40 | 2.1012 | - | - | - | - | - | | 2.9876 | 45 | - | 0.3975 | 0.4085 | 0.4240 | 0.3780 | 0.4291 | | 3.3195 | 50 | 1.8189 | - | - | - | - | - | | **3.9834** | **60** | **1.715** | **0.4029** | **0.411** | **0.4236** | **0.3794** | **0.4288** | | 4.6473 | 70 | 1.6089 | - | - | - | - | - | | 4.9793 | 75 | - | 0.4032 | 0.4107 | 0.4250 | 0.3801 | 0.4312 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.13 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.1.2 - Accelerate: 0.30.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```