--- license: mit --- # Conversational Language Model Interface using FASTTEXT This project provides a Command Line Interface (CLI) for interacting with a FastText language model, enabling users to generate text sequences based on their input. The script allows customization of parameters such as temperature, input text, top-k predictions, and model file path. ## Installation Before running the script, ensure you have Python installed on your system. Additionally, you'll need to install the FastText library: ```bash pip install fasttext ``` ## Usage To use the script, you should first obtain or train a FastText model. Place the model file (usually with a `.bin` extension) in a known directory. The script can be executed with various command-line arguments to specify the behavior: ```python import argparse import fasttext import numpy as np def apply_repetition_penalty(labels, probabilities, used_labels, penalty_scale=1.9): """ Applies a repetition penalty to reduce the probability of already used labels. :param labels: List of possible labels. :param probabilities: Corresponding list of probabilities. :param used_labels: Set of labels that have already been used. :param penalty_scale: Scale of the penalty to be applied. :return: Adjusted probabilities. """ adjusted_probabilities = probabilities.copy() for i, label in enumerate(labels): if label in used_labels: adjusted_probabilities[i] /= penalty_scale # Normalize the probabilities to sum to 1 again adjusted_probabilities /= adjusted_probabilities.sum() return adjusted_probabilities def predict_sequence(model, text, sequence_length=20, temperature=.5, penalty_scale=1.9): """ Generates a sequence of labels using the FastText model with repetition penalty. :param model: Loaded FastText model. :param text: Initial text to start the prediction from. :param sequence_length: Desired length of the sequence. :param temperature: Temperature for sampling. :param penalty_scale: Scale of repetition penalty. :return: List of predicted labels. """ used_labels = set() sequence = [] for _ in range(sequence_length): # Predict the top k most probable labels labels, probabilities = model.predict(text, k=40) labels = [label.replace('__label__', '') for label in labels] probabilities = np.array(probabilities) # Adjust the probabilities with repetition penalty probabilities = apply_repetition_penalty(labels, probabilities, used_labels, penalty_scale) # Sampling according to the adjusted probabilities label_index = np.random.choice(range(len(labels)), p=probabilities) chosen_label = labels[label_index] # Add the chosen label to the sequence and to the set of used labels sequence.append(chosen_label) used_labels.add(chosen_label) # Update the text with the chosen label for the next prediction text += ' ' + chosen_label return sequence def generate_response(model, input_text, sequence_length=512, temperature=.5, penalty_scale=1.9): generated_sequence = predict_sequence(model, input_text, sequence_length, temperature, penalty_scale) return ' '.join(generated_sequence) def main(): parser = argparse.ArgumentParser(description="Run the language model with specified parameters.") parser.add_argument('-t', '--temperature', type=float, default=0.5, help='Temperature for sampling.') parser.add_argument('-f', '--file', type=str, help='File containing input text.') parser.add_argument('-p', '--text', type=str, help='Direct input text.') parser.add_argument('-n', '--length', type=int, default=50, help='length predictions to consider.') parser.add_argument('-m', '--model', type=str, required=True, help='Address of the FastText model file.') args = parser.parse_args() # Load the model model = fasttext.load_model(args.model) input_text = '' if args.file: with open(args.file, 'r') as file: input_text = file.read() elif args.text: input_text = args.text else: print("No input text provided. Please use -f to specify a file or -p for direct text input.") return # Generate and print the response response = generate_response(model, input_text + " [RESPONSE]", sequence_length=args.length, temperature=args.temperature) print("\nResponse:") print(response) if __name__ == "__main__": main() ``` ```bash python conversation_app.py -t TEMPERATURE -f FILE -p TEXT -k TOPK -m MODEL_PATH ``` - `-t TEMPERATURE` or `--temperature TEMPERATURE`: Sets the temperature for predictions. A higher temperature results in more diverse results. Default is 0.5. - `-f FILE` or `--file FILE`: Specifies a path to a file containing input text. The script will read this file and use its contents as input. - `-p TEXT` or `--text TEXT`: Directly provide the input text as a string. - `-n LENGTH` or `--length TOPK`: Determines the number of top predictions to consider for the model's output. Default is 50. - `-m MODEL_PATH` or `--model MODEL_PATH`: The path to the FastText model file (required). ### Example ```bash python conversation_app.py -t 0.7 -p "What is the future of AI?" -n 40 -m /path/to/model.bin ``` This command sets the temperature to 0.7, uses the provided question as input, considers the top 40 predictions, and specifies the model file path. ## Note - The script's output depends on the quality and training of the FastText model used. - Ensure the specified model file path and input file path (if used) are correct.