--- language: - en license: mit library_name: transformers tags: - orpo - qwen2 - sft - chatml - mlx - mlx-my-repo base_model: dfurman/CalmeRys-78B-Orpo-v0.1 datasets: - mlabonne/orpo-dpo-mix-40k pipeline_tag: text-generation inference: false model_creator: dfurman quantized_by: dfurman model-index: - name: CalmeRys-78B-Orpo-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 81.63 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/CalmeRys-78B-Orpo-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 61.92 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/CalmeRys-78B-Orpo-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 37.92 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/CalmeRys-78B-Orpo-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 20.02 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/CalmeRys-78B-Orpo-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 36.37 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/CalmeRys-78B-Orpo-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.8 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/CalmeRys-78B-Orpo-v0.1 name: Open LLM Leaderboard --- # cchance27/CalmeRys-78B-Orpo-v0.1-Q4-mlx The Model [cchance27/CalmeRys-78B-Orpo-v0.1-Q4-mlx](https://huggingface.co/cchance27/CalmeRys-78B-Orpo-v0.1-Q4-mlx) was converted to MLX format from [dfurman/CalmeRys-78B-Orpo-v0.1](https://huggingface.co/dfurman/CalmeRys-78B-Orpo-v0.1) using mlx-lm version **0.19.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("cchance27/CalmeRys-78B-Orpo-v0.1-Q4-mlx") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```