--- language: - en tags: - summarization datasets: - scientific_papers metrics: - rouge model-index: - name: ccdv/lsg-bart-base-4096-pubmed results: [] --- **This model relies on a custom modeling file, you need to add trust_remote_code=True**\ **See [\#13467](https://github.com/huggingface/transformers/pull/13467)** ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-4096-pubmed", trust_remote_code=True) model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-4096-pubmed", trust_remote_code=True) text = "Replace by what you want." pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0) generated_text = pipe( text, truncation=True, max_length=64, no_repeat_ngram_size=7, num_beams=2, early_stopping=True ) ``` # ccdv/lsg-bart-base-4096-pubmed This model is a fine-tuned version of [ccdv/lsg-bart-base-4096](https://huggingface.co/ccdv/lsg-bart-base-4096) on the scientific_papers pubmed dataset. \ It achieves the following results on the test set: | Length | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum | |:------ |:------------ |:---------- |:-------- | :--------- |:----- |:----- |:----- |:----- | | 4096 | Local | 256 | 0 | 768 | 47.37 | 21.74 | 28.59 | 43.67 | | 4096 | Local | 128 | 0 | 384 | 47.02 | 21.33 | 28.34 | 43.31 | | 4096 | Pooling | 128 | 4 | 644 | 47.11 | 21.42 | 28.43 | 43.40 | | 4096 | Stride | 128 | 4 | 644 | 47.16 | 21.49 | 28.38 | 43.44 | | 4096 | Block Stride | 128 | 4 | 160 | 47.13 | 21.46 | 28.39 | 43.42 | | 4096 | Norm | 128 | 4 | 644 | 47.09 | 21.44 | 28.40 | 43.36 | | 4096 | LSH | 128 | 4 | 644 | 47.11 | 21.41 | 28.41 | 43.42 | With blocks of size 32 (lower ressources): | Length | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum | |:------ |:------------ |:---------- |:-------- | :--------- |:----- |:----- |:----- |:----- | | 4096 | Pooling | 32 | 4 | 160 | 44.60 | 19.35 | 26.83 | 40.85 | | 4096 | Stride | 32 | 4 | 160 | 45.52 | 20.07 | 27.39 | 41.75 | | 4096 | Block Stride | 32 | 4 | 160 | 45.30 | 19.89 | 27.22 | 41.54 | | 4096 | Norm | 32 | 4 | 160 | 44.30 | 19.05 | 26.57 | 40.47 | | 4096 | LSH | 32 | 4 | 160 | 44.53 | 19.27 | 26.84 | 40.74 | ## Model description The model relies on Local-Sparse-Global attention to handle long sequences: ![attn](attn.png) The model has about ~145 millions parameters (6 encoder layers - 6 decoder layers). \ The model is warm started from BART-base, converted to handle long sequences (encoder only) and fine tuned. \ ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8.0 ### Generate hyperparameters The following hyperparameters were used during generation: - dataset_name: scientific_papers - dataset_config_name: pubmed - eval_batch_size: 8 - eval_samples: 6658 - early_stopping: True - ignore_pad_token_for_loss: True - length_penalty: 2.0 - max_length: 512 - min_length: 128 - num_beams: 5 - no_repeat_ngram_size: None - seed: 123 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.1+cu102 - Datasets 2.1.0 - Tokenizers 0.11.6