--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: results results: [] --- # results This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0785 - Accuracy: 0.9859 - F1: 0.9821 - Precision: 0.9784 - Recall: 0.9859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 12 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 0.125 | 25 | 1.5465 | 0.4375 | 0.2954 | 0.2488 | 0.4375 | | No log | 0.25 | 50 | 0.6815 | 0.7484 | 0.7144 | 0.7826 | 0.7484 | | No log | 0.375 | 75 | 0.5321 | 0.8281 | 0.7816 | 0.7651 | 0.8281 | | No log | 0.5 | 100 | 0.3030 | 0.9125 | 0.9002 | 0.9154 | 0.9125 | | No log | 0.625 | 125 | 0.1586 | 0.9625 | 0.9587 | 0.9561 | 0.9625 | | No log | 0.75 | 150 | 0.0844 | 0.9781 | 0.9743 | 0.9710 | 0.9781 | | No log | 0.875 | 175 | 0.0785 | 0.9859 | 0.9821 | 0.9784 | 0.9859 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.4.0 - Tokenizers 0.21.0