--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: ' "Ein Tempolimit auf deutschen Autobahnen wäre ein Schlag ins Gesicht aller Autofahrer, die Freiheit und Unabhängigkeit schätzen."' - text: Die Bundesregierung prüft derzeit mehrere Gesetzesinitiativen, die ein generelles Tempolimit auf deutschen Autobahnen vorsehen. - text: ' Das Tempolimit auf Autobahnen würde die Freiheit der Autofahrer massiv einschränken!' - text: '"Während sich unsere Politiker auf ihren Klimakonferenzen über die Notwendigkeit neuer Heizungssysteme unterhalten, vergessen sie dabei geflissentlich, dass die einfache Frau Schmidt oder der einfache Herr Müller bald jeden zweiten Lohnscheck direkt in die Kasse des Heizungsexperten oder des Energiekonzerns überweisen werden."' - text: ' "Das geplante Heizungsgesetz ist ein weiterer Schritt in Richtung staatlicher Bevormundung und wird die Bürger in die Armut treiben."' metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: sentence-transformers/all-MiniLM-L6-v2 model-index: - name: SetFit with sentence-transformers/all-MiniLM-L6-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.931899641577061 name: Accuracy --- # SetFit with sentence-transformers/all-MiniLM-L6-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 256 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-----------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | neutral | | | supportive | | | opposed | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9319 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("cbpuschmann/MiniLM-klimacoder_v0.5") # Run inference preds = model(" Das Tempolimit auf Autobahnen würde die Freiheit der Autofahrer massiv einschränken!") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 11 | 25.5421 | 57 | | Label | Training Sample Count | |:-----------|:----------------------| | neutral | 326 | | opposed | 394 | | supportive | 396 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:-----:|:-------------:|:---------------:| | 0.0000 | 1 | 0.2393 | - | | 0.0019 | 50 | 0.2748 | - | | 0.0039 | 100 | 0.2607 | - | | 0.0058 | 150 | 0.2486 | - | | 0.0077 | 200 | 0.2465 | - | | 0.0097 | 250 | 0.246 | - | | 0.0116 | 300 | 0.2454 | - | | 0.0135 | 350 | 0.2406 | - | | 0.0155 | 400 | 0.235 | - | | 0.0174 | 450 | 0.2269 | - | | 0.0193 | 500 | 0.2184 | - | | 0.0213 | 550 | 0.2095 | - | | 0.0232 | 600 | 0.1833 | - | | 0.0251 | 650 | 0.1777 | - | | 0.0271 | 700 | 0.1548 | - | | 0.0290 | 750 | 0.1464 | - | | 0.0310 | 800 | 0.1326 | - | | 0.0329 | 850 | 0.1304 | - | | 0.0348 | 900 | 0.1237 | - | | 0.0368 | 950 | 0.1163 | - | | 0.0387 | 1000 | 0.1129 | - | | 0.0406 | 1050 | 0.1017 | - | | 0.0426 | 1100 | 0.0907 | - | | 0.0445 | 1150 | 0.0857 | - | | 0.0464 | 1200 | 0.0645 | - | | 0.0484 | 1250 | 0.0641 | - | | 0.0503 | 1300 | 0.0514 | - | | 0.0522 | 1350 | 0.0442 | - | | 0.0542 | 1400 | 0.0342 | - | | 0.0561 | 1450 | 0.0291 | - | | 0.0580 | 1500 | 0.0243 | - | | 0.0600 | 1550 | 0.0185 | - | | 0.0619 | 1600 | 0.0142 | - | | 0.0638 | 1650 | 0.0092 | - | | 0.0658 | 1700 | 0.0112 | - | | 0.0677 | 1750 | 0.0076 | - | | 0.0696 | 1800 | 0.0046 | - | | 0.0716 | 1850 | 0.0038 | - | | 0.0735 | 1900 | 0.0025 | - | | 0.0754 | 1950 | 0.0028 | - | | 0.0774 | 2000 | 0.0034 | - | | 0.0793 | 2050 | 0.0022 | - | | 0.0812 | 2100 | 0.0028 | - | | 0.0832 | 2150 | 0.0025 | - | | 0.0851 | 2200 | 0.0025 | - | | 0.0870 | 2250 | 0.0011 | - | | 0.0890 | 2300 | 0.0013 | - | | 0.0909 | 2350 | 0.0019 | - | | 0.0929 | 2400 | 0.0006 | - | | 0.0948 | 2450 | 0.0013 | - | | 0.0967 | 2500 | 0.0005 | - | | 0.0987 | 2550 | 0.0006 | - | | 0.1006 | 2600 | 0.0012 | - | | 0.1025 | 2650 | 0.0016 | - | | 0.1045 | 2700 | 0.0005 | - | | 0.1064 | 2750 | 0.0004 | - | | 0.1083 | 2800 | 0.0003 | - | | 0.1103 | 2850 | 0.0008 | - | | 0.1122 | 2900 | 0.001 | - | | 0.1141 | 2950 | 0.0018 | - | | 0.1161 | 3000 | 0.0005 | - | | 0.1180 | 3050 | 0.0002 | - | | 0.1199 | 3100 | 0.0005 | - | | 0.1219 | 3150 | 0.0006 | - | | 0.1238 | 3200 | 0.0017 | - | | 0.1257 | 3250 | 0.0009 | - | | 0.1277 | 3300 | 0.0026 | - | | 0.1296 | 3350 | 0.0008 | - | | 0.1315 | 3400 | 0.0009 | - | | 0.1335 | 3450 | 0.0013 | - | | 0.1354 | 3500 | 0.0009 | - | | 0.1373 | 3550 | 0.0011 | - | | 0.1393 | 3600 | 0.0008 | - | | 0.1412 | 3650 | 0.0004 | - | | 0.1431 | 3700 | 0.0009 | - | | 0.1451 | 3750 | 0.0008 | - | | 0.1470 | 3800 | 0.0012 | - | | 0.1489 | 3850 | 0.001 | - | | 0.1509 | 3900 | 0.0003 | - | | 0.1528 | 3950 | 0.0005 | - | | 0.1548 | 4000 | 0.0006 | - | | 0.1567 | 4050 | 0.0007 | - | | 0.1586 | 4100 | 0.0009 | - | | 0.1606 | 4150 | 0.0003 | - | | 0.1625 | 4200 | 0.0001 | - | | 0.1644 | 4250 | 0.0011 | - | | 0.1664 | 4300 | 0.0004 | - | | 0.1683 | 4350 | 0.0005 | - | | 0.1702 | 4400 | 0.001 | - | | 0.1722 | 4450 | 0.0001 | - | | 0.1741 | 4500 | 0.0001 | - | | 0.1760 | 4550 | 0.0001 | - | | 0.1780 | 4600 | 0.0007 | - | | 0.1799 | 4650 | 0.0001 | - | | 0.1818 | 4700 | 0.0 | - | | 0.1838 | 4750 | 0.0 | - | | 0.1857 | 4800 | 0.0001 | - | | 0.1876 | 4850 | 0.0001 | - | | 0.1896 | 4900 | 0.0 | - | | 0.1915 | 4950 | 0.0002 | - | | 0.1934 | 5000 | 0.0008 | - | | 0.1954 | 5050 | 0.0006 | - | | 0.1973 | 5100 | 0.0001 | - | | 0.1992 | 5150 | 0.0 | - | | 0.2012 | 5200 | 0.0 | - | | 0.2031 | 5250 | 0.0006 | - | | 0.2050 | 5300 | 0.0009 | - | | 0.2070 | 5350 | 0.0001 | - | | 0.2089 | 5400 | 0.0004 | - | | 0.2108 | 5450 | 0.0032 | - | | 0.2128 | 5500 | 0.0029 | - | | 0.2147 | 5550 | 0.001 | - | | 0.2167 | 5600 | 0.0014 | - | | 0.2186 | 5650 | 0.0004 | - | | 0.2205 | 5700 | 0.0034 | - | | 0.2225 | 5750 | 0.0003 | - | | 0.2244 | 5800 | 0.0002 | - | | 0.2263 | 5850 | 0.0001 | - | | 0.2283 | 5900 | 0.0 | - | | 0.2302 | 5950 | 0.0 | - | | 0.2321 | 6000 | 0.0 | - | | 0.2341 | 6050 | 0.0 | - | | 0.2360 | 6100 | 0.0 | - | | 0.2379 | 6150 | 0.0 | - | | 0.2399 | 6200 | 0.0 | - | | 0.2418 | 6250 | 0.0 | - | | 0.2437 | 6300 | 0.0001 | - | | 0.2457 | 6350 | 0.0024 | - | | 0.2476 | 6400 | 0.0009 | - | | 0.2495 | 6450 | 0.0005 | - | | 0.2515 | 6500 | 0.0016 | - | | 0.2534 | 6550 | 0.0003 | - | | 0.2553 | 6600 | 0.0001 | - | | 0.2573 | 6650 | 0.0 | - | | 0.2592 | 6700 | 0.0 | - | | 0.2611 | 6750 | 0.0 | - | | 0.2631 | 6800 | 0.0 | - | | 0.2650 | 6850 | 0.0 | - | | 0.2669 | 6900 | 0.0 | - | | 0.2689 | 6950 | 0.0 | - | | 0.2708 | 7000 | 0.0 | - | | 0.2727 | 7050 | 0.0 | - | | 0.2747 | 7100 | 0.0 | - | | 0.2766 | 7150 | 0.0 | - | | 0.2786 | 7200 | 0.0 | - | | 0.2805 | 7250 | 0.0002 | - | | 0.2824 | 7300 | 0.0006 | - | | 0.2844 | 7350 | 0.0008 | - | | 0.2863 | 7400 | 0.0013 | - | | 0.2882 | 7450 | 0.0001 | - | | 0.2902 | 7500 | 0.0005 | - | | 0.2921 | 7550 | 0.0 | - | | 0.2940 | 7600 | 0.0 | - | | 0.2960 | 7650 | 0.0 | - | | 0.2979 | 7700 | 0.0006 | - | | 0.2998 | 7750 | 0.0 | - | | 0.3018 | 7800 | 0.0 | - | | 0.3037 | 7850 | 0.0 | - | | 0.3056 | 7900 | 0.0 | - | | 0.3076 | 7950 | 0.0 | - | | 0.3095 | 8000 | 0.0 | - | | 0.3114 | 8050 | 0.0 | - | | 0.3134 | 8100 | 0.0 | - | | 0.3153 | 8150 | 0.0 | - | | 0.3172 | 8200 | 0.0 | - | | 0.3192 | 8250 | 0.0 | - | | 0.3211 | 8300 | 0.0 | - | | 0.3230 | 8350 | 0.0 | - | | 0.3250 | 8400 | 0.0 | - | | 0.3269 | 8450 | 0.0 | - | | 0.3288 | 8500 | 0.0 | - | | 0.3308 | 8550 | 0.0 | - | | 0.3327 | 8600 | 0.0 | - | | 0.3346 | 8650 | 0.0004 | - | | 0.3366 | 8700 | 0.0 | - | | 0.3385 | 8750 | 0.0 | - | | 0.3405 | 8800 | 0.0 | - | | 0.3424 | 8850 | 0.0 | - | | 0.3443 | 8900 | 0.0 | - | | 0.3463 | 8950 | 0.0 | - | | 0.3482 | 9000 | 0.0 | - | | 0.3501 | 9050 | 0.0 | - | | 0.3521 | 9100 | 0.0001 | - | | 0.3540 | 9150 | 0.0037 | - | | 0.3559 | 9200 | 0.0013 | - | | 0.3579 | 9250 | 0.0007 | - | | 0.3598 | 9300 | 0.0032 | - | | 0.3617 | 9350 | 0.0006 | - | | 0.3637 | 9400 | 0.0007 | - | | 0.3656 | 9450 | 0.0 | - | | 0.3675 | 9500 | 0.0006 | - | | 0.3695 | 9550 | 0.0001 | - | | 0.3714 | 9600 | 0.0004 | - | | 0.3733 | 9650 | 0.0001 | - | | 0.3753 | 9700 | 0.0001 | - | | 0.3772 | 9750 | 0.0 | - | | 0.3791 | 9800 | 0.0 | - | | 0.3811 | 9850 | 0.0 | - | | 0.3830 | 9900 | 0.0 | - | | 0.3849 | 9950 | 0.0 | - | | 0.3869 | 10000 | 0.0 | - | | 0.3888 | 10050 | 0.0 | - | | 0.3907 | 10100 | 0.0 | - | | 0.3927 | 10150 | 0.0 | - | | 0.3946 | 10200 | 0.0 | - | | 0.3965 | 10250 | 0.0 | - | | 0.3985 | 10300 | 0.0 | - | | 0.4004 | 10350 | 0.0 | - | | 0.4024 | 10400 | 0.0 | - | | 0.4043 | 10450 | 0.0 | - | | 0.4062 | 10500 | 0.0 | - | | 0.4082 | 10550 | 0.0 | - | | 0.4101 | 10600 | 0.0 | - | | 0.4120 | 10650 | 0.0 | - | | 0.4140 | 10700 | 0.0 | - | | 0.4159 | 10750 | 0.0 | - | | 0.4178 | 10800 | 0.0 | - | | 0.4198 | 10850 | 0.0 | - | | 0.4217 | 10900 | 0.0001 | - | | 0.4236 | 10950 | 0.0 | - | | 0.4256 | 11000 | 0.0 | - | | 0.4275 | 11050 | 0.0007 | - | | 0.4294 | 11100 | 0.0043 | - | | 0.4314 | 11150 | 0.0011 | - | | 0.4333 | 11200 | 0.0013 | - | | 0.4352 | 11250 | 0.0005 | - | | 0.4372 | 11300 | 0.0004 | - | | 0.4391 | 11350 | 0.0001 | - | | 0.4410 | 11400 | 0.0001 | - | | 0.4430 | 11450 | 0.0 | - | | 0.4449 | 11500 | 0.0001 | - | | 0.4468 | 11550 | 0.0 | - | | 0.4488 | 11600 | 0.0001 | - | | 0.4507 | 11650 | 0.0004 | - | | 0.4526 | 11700 | 0.0001 | - | | 0.4546 | 11750 | 0.0 | - | | 0.4565 | 11800 | 0.0013 | - | | 0.4584 | 11850 | 0.0006 | - | | 0.4604 | 11900 | 0.0001 | - | | 0.4623 | 11950 | 0.0 | - | | 0.4643 | 12000 | 0.0 | - | | 0.4662 | 12050 | 0.0 | - | | 0.4681 | 12100 | 0.0 | - | | 0.4701 | 12150 | 0.0 | - | | 0.4720 | 12200 | 0.0002 | - | | 0.4739 | 12250 | 0.0 | - | | 0.4759 | 12300 | 0.0 | - | | 0.4778 | 12350 | 0.0 | - | | 0.4797 | 12400 | 0.0 | - | | 0.4817 | 12450 | 0.0 | - | | 0.4836 | 12500 | 0.0 | - | | 0.4855 | 12550 | 0.0 | - | | 0.4875 | 12600 | 0.0 | - | | 0.4894 | 12650 | 0.0 | - | | 0.4913 | 12700 | 0.0 | - | | 0.4933 | 12750 | 0.0 | - | | 0.4952 | 12800 | 0.0 | - | | 0.4971 | 12850 | 0.0 | - | | 0.4991 | 12900 | 0.0 | - | | 0.5010 | 12950 | 0.0 | - | | 0.5029 | 13000 | 0.0 | - | | 0.5049 | 13050 | 0.0 | - | | 0.5068 | 13100 | 0.0 | - | | 0.5087 | 13150 | 0.0 | - | | 0.5107 | 13200 | 0.0 | - | | 0.5126 | 13250 | 0.0 | - | | 0.5145 | 13300 | 0.0 | - | | 0.5165 | 13350 | 0.0 | - | | 0.5184 | 13400 | 0.0 | - | | 0.5203 | 13450 | 0.0 | - | | 0.5223 | 13500 | 0.0 | - | | 0.5242 | 13550 | 0.0 | - | | 0.5262 | 13600 | 0.0 | - | | 0.5281 | 13650 | 0.0 | - | | 0.5300 | 13700 | 0.0 | - | | 0.5320 | 13750 | 0.0 | - | | 0.5339 | 13800 | 0.0 | - | | 0.5358 | 13850 | 0.0 | - | | 0.5378 | 13900 | 0.0 | - | | 0.5397 | 13950 | 0.0 | - | | 0.5416 | 14000 | 0.0 | - | | 0.5436 | 14050 | 0.0 | - | | 0.5455 | 14100 | 0.0 | - | | 0.5474 | 14150 | 0.0 | - | | 0.5494 | 14200 | 0.0 | - | | 0.5513 | 14250 | 0.0 | - | | 0.5532 | 14300 | 0.0 | - | | 0.5552 | 14350 | 0.0 | - | | 0.5571 | 14400 | 0.0 | - | | 0.5590 | 14450 | 0.0 | - | | 0.5610 | 14500 | 0.0 | - | | 0.5629 | 14550 | 0.0 | - | | 0.5648 | 14600 | 0.0 | - | | 0.5668 | 14650 | 0.0 | - | | 0.5687 | 14700 | 0.0 | - | | 0.5706 | 14750 | 0.0 | - | | 0.5726 | 14800 | 0.0 | - | | 0.5745 | 14850 | 0.0 | - | | 0.5764 | 14900 | 0.0 | - | | 0.5784 | 14950 | 0.0 | - | | 0.5803 | 15000 | 0.0 | - | | 0.5823 | 15050 | 0.0 | - | | 0.5842 | 15100 | 0.0 | - | | 0.5861 | 15150 | 0.0009 | - | | 0.5881 | 15200 | 0.0006 | - | | 0.5900 | 15250 | 0.0 | - | | 0.5919 | 15300 | 0.0 | - | | 0.5939 | 15350 | 0.0 | - | | 0.5958 | 15400 | 0.0 | - | | 0.5977 | 15450 | 0.0 | - | | 0.5997 | 15500 | 0.0 | - | | 0.6016 | 15550 | 0.0 | - | | 0.6035 | 15600 | 0.0 | - | | 0.6055 | 15650 | 0.0 | - | | 0.6074 | 15700 | 0.0 | - | | 0.6093 | 15750 | 0.0006 | - | | 0.6113 | 15800 | 0.0007 | - | | 0.6132 | 15850 | 0.0 | - | | 0.6151 | 15900 | 0.0 | - | | 0.6171 | 15950 | 0.0 | - | | 0.6190 | 16000 | 0.0 | - | | 0.6209 | 16050 | 0.0 | - | | 0.6229 | 16100 | 0.0 | - | | 0.6248 | 16150 | 0.0 | - | | 0.6267 | 16200 | 0.0 | - | | 0.6287 | 16250 | 0.0 | - | | 0.6306 | 16300 | 0.0 | - | | 0.6325 | 16350 | 0.0 | - | | 0.6345 | 16400 | 0.0 | - | | 0.6364 | 16450 | 0.0 | - | | 0.6383 | 16500 | 0.0 | - | | 0.6403 | 16550 | 0.0 | - | | 0.6422 | 16600 | 0.0 | - | | 0.6442 | 16650 | 0.0 | - | | 0.6461 | 16700 | 0.0 | - | | 0.6480 | 16750 | 0.0 | - | | 0.6500 | 16800 | 0.0 | - | | 0.6519 | 16850 | 0.0 | - | | 0.6538 | 16900 | 0.0 | - | | 0.6558 | 16950 | 0.0 | - | | 0.6577 | 17000 | 0.0 | - | | 0.6596 | 17050 | 0.0 | - | | 0.6616 | 17100 | 0.0 | - | | 0.6635 | 17150 | 0.0 | - | | 0.6654 | 17200 | 0.0 | - | | 0.6674 | 17250 | 0.0 | - | | 0.6693 | 17300 | 0.0 | - | | 0.6712 | 17350 | 0.0 | - | | 0.6732 | 17400 | 0.0 | - | | 0.6751 | 17450 | 0.0 | - | | 0.6770 | 17500 | 0.0 | - | | 0.6790 | 17550 | 0.0 | - | | 0.6809 | 17600 | 0.0 | - | | 0.6828 | 17650 | 0.0 | - | | 0.6848 | 17700 | 0.0 | - | | 0.6867 | 17750 | 0.0 | - | | 0.6886 | 17800 | 0.0 | - | | 0.6906 | 17850 | 0.0 | - | | 0.6925 | 17900 | 0.0 | - | | 0.6944 | 17950 | 0.0 | - | | 0.6964 | 18000 | 0.0 | - | | 0.6983 | 18050 | 0.0007 | - | | 0.7002 | 18100 | 0.0 | - | | 0.7022 | 18150 | 0.0 | - | | 0.7041 | 18200 | 0.0 | - | | 0.7061 | 18250 | 0.0 | - | | 0.7080 | 18300 | 0.0 | - | | 0.7099 | 18350 | 0.0 | - | | 0.7119 | 18400 | 0.0 | - | | 0.7138 | 18450 | 0.0 | - | | 0.7157 | 18500 | 0.0001 | - | | 0.7177 | 18550 | 0.0 | - | | 0.7196 | 18600 | 0.0 | - | | 0.7215 | 18650 | 0.0004 | - | | 0.7235 | 18700 | 0.0 | - | | 0.7254 | 18750 | 0.0 | - | | 0.7273 | 18800 | 0.0 | - | | 0.7293 | 18850 | 0.0 | - | | 0.7312 | 18900 | 0.0 | - | | 0.7331 | 18950 | 0.0 | - | | 0.7351 | 19000 | 0.0 | - | | 0.7370 | 19050 | 0.0 | - | | 0.7389 | 19100 | 0.0 | - | | 0.7409 | 19150 | 0.0 | - | | 0.7428 | 19200 | 0.0 | - | | 0.7447 | 19250 | 0.0 | - | | 0.7467 | 19300 | 0.0 | - | | 0.7486 | 19350 | 0.0 | - | | 0.7505 | 19400 | 0.0 | - | | 0.7525 | 19450 | 0.0 | - | | 0.7544 | 19500 | 0.0 | - | | 0.7563 | 19550 | 0.0 | - | | 0.7583 | 19600 | 0.0 | - | | 0.7602 | 19650 | 0.0 | - | | 0.7621 | 19700 | 0.0 | - | | 0.7641 | 19750 | 0.0 | - | | 0.7660 | 19800 | 0.0 | - | | 0.7680 | 19850 | 0.0 | - | | 0.7699 | 19900 | 0.0 | - | | 0.7718 | 19950 | 0.0 | - | | 0.7738 | 20000 | 0.0 | - | | 0.7757 | 20050 | 0.0 | - | | 0.7776 | 20100 | 0.0 | - | | 0.7796 | 20150 | 0.0 | - | | 0.7815 | 20200 | 0.0 | - | | 0.7834 | 20250 | 0.0 | - | | 0.7854 | 20300 | 0.0 | - | | 0.7873 | 20350 | 0.0 | - | | 0.7892 | 20400 | 0.0 | - | | 0.7912 | 20450 | 0.0 | - | | 0.7931 | 20500 | 0.0 | - | | 0.7950 | 20550 | 0.0 | - | | 0.7970 | 20600 | 0.0 | - | | 0.7989 | 20650 | 0.0 | - | | 0.8008 | 20700 | 0.0 | - | | 0.8028 | 20750 | 0.0 | - | | 0.8047 | 20800 | 0.0 | - | | 0.8066 | 20850 | 0.0 | - | | 0.8086 | 20900 | 0.0 | - | | 0.8105 | 20950 | 0.0 | - | | 0.8124 | 21000 | 0.0 | - | | 0.8144 | 21050 | 0.0 | - | | 0.8163 | 21100 | 0.0 | - | | 0.8182 | 21150 | 0.0 | - | | 0.8202 | 21200 | 0.0 | - | | 0.8221 | 21250 | 0.0 | - | | 0.8240 | 21300 | 0.0 | - | | 0.8260 | 21350 | 0.0 | - | | 0.8279 | 21400 | 0.0 | - | | 0.8299 | 21450 | 0.0 | - | | 0.8318 | 21500 | 0.0 | - | | 0.8337 | 21550 | 0.0 | - | | 0.8357 | 21600 | 0.0 | - | | 0.8376 | 21650 | 0.0 | - | | 0.8395 | 21700 | 0.0 | - | | 0.8415 | 21750 | 0.0 | - | | 0.8434 | 21800 | 0.0 | - | | 0.8453 | 21850 | 0.0 | - | | 0.8473 | 21900 | 0.0 | - | | 0.8492 | 21950 | 0.0 | - | | 0.8511 | 22000 | 0.0 | - | | 0.8531 | 22050 | 0.0 | - | | 0.8550 | 22100 | 0.0 | - | | 0.8569 | 22150 | 0.0 | - | | 0.8589 | 22200 | 0.0 | - | | 0.8608 | 22250 | 0.0 | - | | 0.8627 | 22300 | 0.0 | - | | 0.8647 | 22350 | 0.0 | - | | 0.8666 | 22400 | 0.0 | - | | 0.8685 | 22450 | 0.0 | - | | 0.8705 | 22500 | 0.0 | - | | 0.8724 | 22550 | 0.0 | - | | 0.8743 | 22600 | 0.0 | - | | 0.8763 | 22650 | 0.0 | - | | 0.8782 | 22700 | 0.0 | - | | 0.8801 | 22750 | 0.0 | - | | 0.8821 | 22800 | 0.0 | - | | 0.8840 | 22850 | 0.0 | - | | 0.8859 | 22900 | 0.0 | - | | 0.8879 | 22950 | 0.0 | - | | 0.8898 | 23000 | 0.0 | - | | 0.8918 | 23050 | 0.0 | - | | 0.8937 | 23100 | 0.0 | - | | 0.8956 | 23150 | 0.0 | - | | 0.8976 | 23200 | 0.0 | - | | 0.8995 | 23250 | 0.0 | - | | 0.9014 | 23300 | 0.0 | - | | 0.9034 | 23350 | 0.0 | - | | 0.9053 | 23400 | 0.0 | - | | 0.9072 | 23450 | 0.0 | - | | 0.9092 | 23500 | 0.0 | - | | 0.9111 | 23550 | 0.0 | - | | 0.9130 | 23600 | 0.0 | - | | 0.9150 | 23650 | 0.0 | - | | 0.9169 | 23700 | 0.0 | - | | 0.9188 | 23750 | 0.0 | - | | 0.9208 | 23800 | 0.0 | - | | 0.9227 | 23850 | 0.0 | - | | 0.9246 | 23900 | 0.0 | - | | 0.9266 | 23950 | 0.0 | - | | 0.9285 | 24000 | 0.0 | - | | 0.9304 | 24050 | 0.0 | - | | 0.9324 | 24100 | 0.0 | - | | 0.9343 | 24150 | 0.0 | - | | 0.9362 | 24200 | 0.0 | - | | 0.9382 | 24250 | 0.0 | - | | 0.9401 | 24300 | 0.0 | - | | 0.9420 | 24350 | 0.0 | - | | 0.9440 | 24400 | 0.0 | - | | 0.9459 | 24450 | 0.0 | - | | 0.9478 | 24500 | 0.0 | - | | 0.9498 | 24550 | 0.0 | - | | 0.9517 | 24600 | 0.0 | - | | 0.9537 | 24650 | 0.0 | - | | 0.9556 | 24700 | 0.0 | - | | 0.9575 | 24750 | 0.0 | - | | 0.9595 | 24800 | 0.0 | - | | 0.9614 | 24850 | 0.0 | - | | 0.9633 | 24900 | 0.0 | - | | 0.9653 | 24950 | 0.0 | - | | 0.9672 | 25000 | 0.0 | - | | 0.9691 | 25050 | 0.0 | - | | 0.9711 | 25100 | 0.0 | - | | 0.9730 | 25150 | 0.0 | - | | 0.9749 | 25200 | 0.0 | - | | 0.9769 | 25250 | 0.0 | - | | 0.9788 | 25300 | 0.0 | - | | 0.9807 | 25350 | 0.0 | - | | 0.9827 | 25400 | 0.0 | - | | 0.9846 | 25450 | 0.0 | - | | 0.9865 | 25500 | 0.0 | - | | 0.9885 | 25550 | 0.0 | - | | 0.9904 | 25600 | 0.0 | - | | 0.9923 | 25650 | 0.0 | - | | 0.9943 | 25700 | 0.0 | - | | 0.9962 | 25750 | 0.0 | - | | 0.9981 | 25800 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.42.2 - PyTorch: 2.5.1+cu121 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```