--- language: - zh tags: - SequenceClassification - 古文 - 文言文 - ancient - classical - letter - 书信标题 license: cc-by-nc-sa-4.0 --- # BertForSequenceClassification model (Classical Chinese) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1jVu2LrNwkLolItPALKGNjeT6iCfzF8Ic?usp=sharing/) This BertForSequenceClassification Classical Chinese model is intended to predict whether a Classical Chinese sentence is a letter title (书信标题) or not. This model is first inherited from the BERT base Chinese model (MLM), and finetuned using a large corpus of Classical Chinese language (3GB textual dataset), then concatenated with the BertForSequenceClassification architecture to perform a binary classification task. * Labels: 0 = non-letter, 1 = letter ## Model description The BertForSequenceClassification model architecture inherits the BERT base model and concatenates a fully-connected linear layer to perform a binary-class classification task.More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): The masked language modeling architecture randomly masks 15% of the words in the inputs, and the model is trained to predict the masked words. The BERT base model uses this MLM architecture and is pre-trained on a large corpus of data. BERT is proven to produce robust word embedding and can capture rich contextual and semantic relationships. Our model inherits the publicly available pre-trained BERT Chinese model trained on modern Chinese data. To perform a Classical Chinese letter classification task, we first finetuned the model using a large corpus of Classical Chinese data (3GB textual data), and then connected it to the BertForSequenceClassification architecture for Classical Chinese letter classification. - Sequence classification: the model concatenates a fully-connected linear layer to output the probability of each class. In our binary classification task, the final linear layer has two classes. ## Intended uses & limitations Note that this model is primiarly aimed at predicting whether a Classical Chinese sentence is a letter title (书信标题) or not. ### How to use Note that this model is primiarly aimed at predicting whether a Classical Chinese sentence is a letter title (书信标题) or not. Here is how to use this model to get the features of a given text in PyTorch: 1. Import model and packages ```python from transformers import BertTokenizer from transformers import BertForSequenceClassification import torch from numpy import exp import numpy as np tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertForSequenceClassification.from_pretrained('cbdb/ClassicalChineseLetterClassification', output_attentions=False, output_hidden_states=False) ``` 2. Make a prediction ```python max_seq_len = 512 def softmax(vector): e = exp(vector) return e / e.sum() def predict_class(test_sen): tokens_test = tokenizer.encode_plus( test_sen, add_special_tokens=True, return_attention_mask=True, padding=True, max_length=max_seq_len, return_tensors='pt', truncation=True ) test_seq = torch.tensor(tokens_test['input_ids']) test_mask = torch.tensor(tokens_test['attention_mask']) # get predictions for test data with torch.no_grad(): outputs = model(test_seq, test_mask) outputs = outputs.logits.detach().cpu().numpy() softmax_score = softmax(outputs) pred_class_dict = {k:v for k, v in zip(label2idx.keys(), softmax_score[0])} return pred_class_dict label2idx = {'not-letter': 0,'letter': 1} idx2label = {v:k for k,v in label2idx.items()} ``` 3. Change your sentence here ```python label2idx = {'not-letter': 0,'letter': 1} idx2label = {v:k for k,v in label2idx.items()} test_sen = '上丞相康思公書' pred_class_proba = predict_class(test_sen) print(f'The predicted probability for the {list(pred_class_proba.keys())[0]} class: {list(pred_class_proba.values())[0]}') print(f'The predicted probability for the {list(pred_class_proba.keys())[1]} class: {list(pred_class_proba.values())[1]}') ``` >>> The predicted probability for the not-letter class: 0.002029061783105135 >>> The predicted probability for the letter class: 0.9979709386825562 ```python pred_class = idx2label[np.argmax(list(pred_class_proba.values()))] print(f'The predicted class is: {pred_class}') ``` >>> The predicted class is: letter Author: Queenie Luo (queenieluo[at]g.harvard.edu)