---
base_model: indobenchmark/indobert-base-p2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:133472
- loss:SoftmaxLoss
widget:
- source_sentence: Dua tim anak-anak, yang satu berwarna hijau dan yang lainnya berwarna
merah, bermain bersama dalam permainan Rugby saat hujan.
sentences:
- Tiga orang berada di dalam perahu.
- seorang pria di atas sepeda
- Tim rugby anak-anak, merah versus hijau bermain di tengah hujan.
- source_sentence: Seorang pria melakukan perawatan di rel kereta api
sentences:
- Dua orang terlibat dalam percakapan.
- Ada seorang wanita melakukan pekerjaan di rel kereta api.
- orang-orang duduk di bar
- source_sentence: Sepasang suami istri dengan pakaian renang berjalan di pantai.
sentences:
- pasangan itu duduk di dalam
- Pria itu sedang makan.
- Dua orang sedang berpose untuk difoto.
- source_sentence: Dua orang sedang duduk di samping api unggun bertumpuk kayu di
malam hari.
sentences:
- Seseorang memegang jeruk dan berjalan
- Orang-orang duduk di luar di malam hari.
- Orang-orang berada di luar.
- source_sentence: Wanita profesional di meja pendaftaran acara sementara pria berjas
melihat.
sentences:
- Orang-orang berkumpul untuk sebuah acara.
- Seorang wanita sedang berjalan menuju taman.
- Ada seorang anak yang tersenyum untuk difoto.
model-index:
- name: SentenceTransformer based on indobenchmark/indobert-base-p2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.23146247451934734
name: Pearson Cosine
- type: spearman_cosine
value: 0.23182555096720683
name: Spearman Cosine
- type: pearson_manhattan
value: 0.19847600869622337
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.2038189662328075
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.198744291061789
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.20385658228775938
name: Spearman Euclidean
- type: pearson_dot
value: 0.2561502821889763
name: Pearson Dot
- type: spearman_dot
value: 0.25101474046220823
name: Spearman Dot
- type: pearson_max
value: 0.2561502821889763
name: Pearson Max
- type: spearman_max
value: 0.25101474046220823
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.5914831439397401
name: Pearson Cosine
- type: spearman_cosine
value: 0.5978838704506128
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5131648451956073
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.5147175261736068
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5942850778734059
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6001963453484881
name: Spearman Euclidean
- type: pearson_dot
value: 0.5880400881430983
name: Pearson Dot
- type: spearman_dot
value: 0.5933998114680769
name: Spearman Dot
- type: pearson_max
value: 0.5942850778734059
name: Pearson Max
- type: spearman_max
value: 0.6001963453484881
name: Spearman Max
---
# SentenceTransformer based on indobenchmark/indobert-base-p2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("cassador/indobert-snli-v1")
# Run inference
sentences = [
'Wanita profesional di meja pendaftaran acara sementara pria berjas melihat.',
'Orang-orang berkumpul untuk sebuah acara.',
'Ada seorang anak yang tersenyum untuk difoto.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.2315 |
| **spearman_cosine** | **0.2318** |
| pearson_manhattan | 0.1985 |
| spearman_manhattan | 0.2038 |
| pearson_euclidean | 0.1987 |
| spearman_euclidean | 0.2039 |
| pearson_dot | 0.2562 |
| spearman_dot | 0.251 |
| pearson_max | 0.2562 |
| spearman_max | 0.251 |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.5915 |
| **spearman_cosine** | **0.5979** |
| pearson_manhattan | 0.5132 |
| spearman_manhattan | 0.5147 |
| pearson_euclidean | 0.5943 |
| spearman_euclidean | 0.6002 |
| pearson_dot | 0.588 |
| spearman_dot | 0.5934 |
| pearson_max | 0.5943 |
| spearman_max | 0.6002 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 133,472 training samples
* Columns: label
, kalimat1
, and kalimat2
* Approximate statistics based on the first 1000 samples:
| | label | kalimat1 | kalimat2 |
|:--------|:------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | int | string | string |
| details |
0
| Seseorang di atas kuda melompati pesawat yang rusak.
| Seseorang sedang makan malam, memesan telur dadar.
|
| 1
| Seseorang di atas kuda melompati pesawat yang rusak.
| Seseorang berada di luar ruangan, di atas kuda.
|
| 1
| Anak-anak tersenyum dan melambai ke kamera
| Ada anak-anak yang hadir
|
* Loss: [SoftmaxLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 6,607 evaluation samples
* Columns: label
, kalimat1
, and kalimat2
* Approximate statistics based on the first 1000 samples:
| | label | kalimat1 | kalimat2 |
|:--------|:------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | int | string | string |
| details | 1
| Dua wanita berpelukan sambil memegang paket untuk pergi.
| Dua wanita memegang paket.
|
| 0
| Dua wanita berpelukan sambil memegang paket untuk pergi.
| Orang-orang berkelahi di luar toko makanan.
|
| 1
| Dua anak kecil berbaju biru, satu dengan nomor 9 dan satu dengan nomor 2 berdiri di tangga kayu di kamar mandi dan mencuci tangan di wastafel.
| Dua anak dengan kaus bernomor mencuci tangan mereka.
|
* Loss: [SoftmaxLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters