--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: fedcsis-intent_baseline-xlm_r-en results: [] --- # fedcsis-intent_baseline-xlm_r-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [leyzer-fedcsis](https://huggingface.co/datasets/cartesinus/leyzer-fedcsis) dataset. Results on test set: - Accuracy: **0.904007** It achieves the following results on the evaluation set: - Loss: 0.1286 - Accuracy: **0.9772** ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 3.4583 | 1.0 | 814 | 1.7712 | 0.6193 | 0.6193 | | 1.3828 | 2.0 | 1628 | 0.9693 | 0.8073 | 0.8073 | | 0.9585 | 3.0 | 2442 | 0.5830 | 0.8893 | 0.8893 | | 0.502 | 4.0 | 3256 | 0.3813 | 0.9295 | 0.9295 | | 0.2907 | 5.0 | 4070 | 0.2699 | 0.9485 | 0.9485 | | 0.2267 | 6.0 | 4884 | 0.2059 | 0.9615 | 0.9615 | | 0.1437 | 7.0 | 5698 | 0.1648 | 0.9700 | 0.9700 | | 0.0998 | 8.0 | 6512 | 0.1422 | 0.9741 | 0.9741 | | 0.0856 | 9.0 | 7326 | 0.1334 | 0.9758 | 0.9758 | | 0.0748 | 10.0 | 8140 | 0.1286 | 0.9772 | 0.9772 | ### Framework versions - Transformers 4.27.0 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2