---
base_model: sentence-transformers/all-mpnet-base-v2
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:505654
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'module: stationery & printed material & services group: stationery
& printed material & services supergroup: stationery & printed material & services
example descriptions: munchkin crayons hween printedsheet mask 2 pk printed tape
tour os silver butterfly relax with art m ab hardbacknotebook stickers p val youmeyou
text heat w mandalorian a 5 nbook nediun bubble envelopes 6 pk whs pastel expan
org p poll decoration 1 airtricity payasyoug'
sentences:
- 'retailer: groveify description: rainbow magicbooks'
- 'retailer: crispcorner description: glazed k kreme'
- 'retailer: vitalveg description: may held aop fl'
- source_sentence: 'module: flavoured drinks carbonated cola group: drinks flavoured
rtd supergroup: beverages non alcoholic example descriptions: cola w xcoke zero
15 oml pepsi 240 k coke zero 500 ml d lepsi max chry 600 coke cherry can 009500
pepsi max 500 ml tuo diet coke cf kloke zero coke zero 250 ml diet coke nin 15
cocac 3 a 250 ml coca cola 330 ml 10 px coke 125 lzero coke 250 mlreg pmpg 5 p'
sentences:
- 'retailer: vitalveg description: coke 240 k'
- 'retailer: vitalveg description: tala silicone icing'
- 'retailer: bountify description: pah antibac wood 10 l'
- source_sentence: 'module: skin conditioning moisturising group: skin conditioning
moisturising supergroup: personal care example descriptions: ss crmy bdy oil dove
dm spa sr f m 7 nivea creme 50 carmex lime stick talc powder bo dry skn gel garnier
milk bld lpblm orgnl vit a serum nv cr gran oh olay bright eye crm bio oil 2 x
200 ml nvfc srm q 10 prlbst sf aa nt crm 50 aveeno cream 500 ml'
sentences:
- 'retailer: wilko description: radiator m key'
- 'retailer: nourify description: okf lprp tblpbl un'
- 'retailer: crispcorner description: 065 each fredflo 60 biodegradable'
- source_sentence: 'module: cakes gateaux ambient group: cakes gateaux ambient supergroup:
food ambient example descriptions: x 20 pkmcvitiesjaffacakes 1 srn ban lunchbx
js angel slices x 6 spk mr kipling frosty fancies plantastic cherry choc fl hr
kipling angel slices 10 pk brompton choc brownies jschocchunknuffin loaded drip
cake hobnbchoc fjack oreo muffins x 2 mr kipling victoria slices 6 pack mk kip
choc rdsugar m the best brownies odby 5 choc mini'
sentences:
- 'retailer: flavorful description: nr choc brownies'
- 'retailer: producify description: dettol srfc wipe'
- 'retailer: noshify description: garden wheels plate'
- source_sentence: 'module: bread ambient group: bread ambient supergroup: food ambient
example descriptions: 1 war 3 toastie 400 g cc 90 varburtons bread tovis snelwrspmpkin
800 g warbutons medium bread spk giant crumpets z hovis med wht 600 g sandwich
thins 5 pk warb pk crumpets mission plain tortilla 25 cm warburtons 4 protein
thin bagels hovis soft wet med hovis wholemefl pataks pappadums 6 pk warb so bth
disc pappajuns'
sentences:
- 'retailer: greenly description: pomodoro sauce'
- 'retailer: crispcorner description: kingsmill 5050 medius bread 800 g'
- 'retailer: vitalveg description: ready to eat prun'
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: sentence transformers/all mpnet base v2
type: sentence-transformers/all-mpnet-base-v2
metrics:
- type: cosine_accuracy@1
value: 0.498812351543943
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6342042755344418
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7102137767220903
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7838479809976246
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.498812351543943
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.21140142517814728
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14204275534441804
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07838479809976245
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.498812351543943
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6342042755344418
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7102137767220903
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7838479809976246
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6324346540369431
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5850111224220487
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5910447073012788
name: Cosine Map@100
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- csv
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("carnival13/all-mpnet-base-v2-modulepred")
# Run inference
sentences = [
'module: bread ambient group: bread ambient supergroup: food ambient example descriptions: 1 war 3 toastie 400 g cc 90 varburtons bread tovis snelwrspmpkin 800 g warbutons medium bread spk giant crumpets z hovis med wht 600 g sandwich thins 5 pk warb pk crumpets mission plain tortilla 25 cm warburtons 4 protein thin bagels hovis soft wet med hovis wholemefl pataks pappadums 6 pk warb so bth disc pappajuns',
'retailer: crispcorner description: kingsmill 5050 medius bread 800 g',
'retailer: vitalveg description: ready to eat prun',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `sentence-transformers/all-mpnet-base-v2`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.4988 |
| cosine_accuracy@3 | 0.6342 |
| cosine_accuracy@5 | 0.7102 |
| cosine_accuracy@10 | 0.7838 |
| cosine_precision@1 | 0.4988 |
| cosine_precision@3 | 0.2114 |
| cosine_precision@5 | 0.142 |
| cosine_precision@10 | 0.0784 |
| cosine_recall@1 | 0.4988 |
| cosine_recall@3 | 0.6342 |
| cosine_recall@5 | 0.7102 |
| cosine_recall@10 | 0.7838 |
| cosine_ndcg@10 | 0.6324 |
| cosine_mrr@10 | 0.585 |
| **cosine_map@100** | **0.591** |
## Training Details
### Training Dataset
#### csv
* Dataset: csv
* Size: 505,654 training samples
* Columns: query
and full_doc
* Approximate statistics based on the first 1000 samples:
| | query | full_doc |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details |
retailer: vitalveg description: twin xira
| module: chocolate single variety group: chocolate chocolate substitutes supergroup: biscuits & confectionery & snacks example descriptions: milky way twin 43 crml prtzlarum rai galaxy mnstr pipnut 34 g dark pb cup nest mnch foge p nestle smarties shar dark choc chun x 10 pk kinder bueno 1 dr oetker 72 da poppets choc offee pouch yorkie biscuit zpk haltesers truffles bog cadbury mini snowballs p terrys choc orange 3435 g galaxy fusion dark 704 100 g
|
| retailer: freshnosh description: mab pop sockt
| module: clothing & personal accessories group: clothing & personal accessories supergroup: clothing & personal accessories example descriptions: pk blue trad ging 40 d 3 pk opaque tight t 74 green cali jogger ss animal swing yb denim stripe pump aw 21 ff vest aw 21 girls 5 pk lounge toplo sku 1 pk fleecy tight knitted pom hat pk briefs timeless double pom pomkids hat cute face twosie sku coral jersey str pun faded petrol t 32 seamfree waist c
|
| retailer: nourify description: bts prwn ckt swch
| module: bread sandwiches filled rolls wraps group: bread fresh fixed weight supergroup: food perishable example descriptions: us chicken may hamche sw jo dbs allbtr pp st 4 js baconfree ran posh cheesy bea naturify cb swich sp eggcress f cpdfeggbacon js cheeseonion sv duck wrap reduced price takeout egg mayo sandwich 7 takeout cheeseonion s wich 2 ad leicester plough bts cheese pman 2 1 cp bacon chese s
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters