--- language: - en license: mit datasets: - cardiffnlp/super_tweeteval pipeline_tag: text-classification --- # cardiffnlp/twitter-roberta-large-topic-sentiment-latest This is a RoBERTa-large model trained on 154M tweets until the end of December 2022 and finetuned for sentiment analysis (target based) on the _TweetSentiment_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval). The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m). # Labels "id2label": { "0": "strongly negative", "1": "negative", "2": "negative or neutral", "3": "positive", "4": "strongly positive" } ## Example ```python from transformers import pipeline text= 'If I make a game as a #windows10 Universal App. Will #xboxone owners be able to download and play it in November? @user @microsoft' target = "@microsoft" text_input = f"{text} {target}" pipe = pipeline('text-classification', model="cardiffnlp/twitter-roberta-large-topic-sentiment-latest") pipe(text) >> [{'label': 'negative or neutral', 'score': 0.8927537798881531}] ``` ## Citation Information Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model. ```bibtex @inproceedings{antypas2023supertweeteval, title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research}, author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados}, booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023}, year={2023} } ```