--- language: - en license: mit datasets: - cardiffnlp/super_tweeteval pipeline_tag: sentence-similarity --- # cardiffnlp/twitter-roberta-large-similarity-latest This is a RoBERTa-large model trained on 154M tweets until the end of December 2022 and finetuned for tweet similarity (regression on two texts) on the _TweetSIM_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval). The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m). ## Example ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = "cardiffnlp/twitter-roberta-large-similarity-latest" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) text_1 = 'Looooooool what is this story #TalksWithAsh' text_2 = 'For someone who keeps saying long story short, the story is quite long iyah #TalksWithAsh' text_input = f"{text_1} {text_2}" model(**tokenizer(text_input, return_tensors="pt")).logits >>tensor([[2.9565]]) ``` ## Citation Information Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model. ```bibtex @inproceedings{antypas2023supertweeteval, title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research}, author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados}, booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023}, year={2023} } ```