--- language: - en license: mit datasets: - cardiffnlp/super_tweeteval pipeline_tag: text-classification --- # cardiffnlp/twitter-roberta-large-hate-latest This is a RoBERTa-large model trained on 154M tweets until the end of December 2022 and finetuned for hate speech detection (multiclass classification) on the _TweetHate_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval). The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m). # Labels "id2label": { "0": "hate_gender", "1": "hate_race", "2": "hate_sexuality", "3": "hate_religion", "4": "hate_origin", "5": "hate_disability", "6": "hate_age", "7": "not_hate" } ## Example ```python from transformers import pipeline text = 'Eid Mubarak Everyone!!! ❤ May Allah unite all Muslims, show us the right path, and bless us with good health.❣' pipe = pipeline('text-classification', model="cardiffnlp/twitter-roberta-large-hate-latest") pipe(text) >> [{'label': 'not_hate', 'score': 0.9997966885566711}] ``` ## Citation Information Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model. ```bibtex @inproceedings{antypas2023supertweeteval, title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research}, author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados}, booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023}, year={2023} } ```