# Twitter-roBERTa-base This is a roBERTa-base model trained on ~58M tweets and finetuned for the emotion prediction task at Semeval 2018. For full description: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). To evaluate this and other models on Twitter-specific data, please refer to the [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='emotion' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") spamreader = csv.reader(html[:-1], delimiter='\t') labels = [row[1] for row in spamreader] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) 😘 0.2637 2) ❀️ 0.1952 3) πŸ’• 0.1171 4) ✨ 0.0927 5) 😊 0.0756 6) πŸ’œ 0.046 7) πŸ’™ 0.0444 8) 😍 0.0272 9) πŸ˜‰ 0.0228 10) 😎 0.0198 11) 😜 0.0166 12) πŸ˜‚ 0.0132 13) 😁 0.0131 14) β˜€ 0.0112 15) πŸŽ„ 0.009 16) πŸ’― 0.009 17) πŸ”₯ 0.008 18) πŸ“· 0.0057 19) πŸ‡ΊπŸ‡Έ 0.005 20) πŸ“Έ 0.0048 ```