cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-all
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-dec2020 on the tweet_topic_single. This model is fine-tuned on train_all
split and validated on test_2021
split of tweet_topic.
Fine-tuning script can be found here. It achieves the following results on the test_2021 set:
- F1 (micro): 0.8901358535144713
- F1 (macro): 0.7760246189555473
- Accuracy: 0.8901358535144713
Usage
from transformers import pipeline
pipe = pipeline("text-classification", "cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-all")
topic = pipe("Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US.")
print(topic)
Reference
@inproceedings{dimosthenis-etal-2022-twitter,
title = "{T}witter {T}opic {C}lassification",
author = "Antypas, Dimosthenis and
Ushio, Asahi and
Camacho-Collados, Jose and
Neves, Leonardo and
Silva, Vitor and
Barbieri, Francesco",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics"
}
- Downloads last month
- 12
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-all
Evaluation results
- F1 on cardiffnlp/tweet_topic_singleself-reported0.890
- F1 (macro) on cardiffnlp/tweet_topic_singleself-reported0.776
- Accuracy on cardiffnlp/tweet_topic_singleself-reported0.890