--- datasets: - tweet_eval metrics: - f1 - accuracy pipeline_tag: text-classification widget: - text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}} example_title: topic_classification 1 - text: Yes, including Medicare and social security saving👍 example_title: sentiment 1 - text: All two of them taste like ass. example_title: offensive 1 - text: If you wanna look like a badass, have drama on social media example_title: irony 1 - text: Whoever just unfollowed me you a bitch example_title: hate 1 - text: I love swimming for the same reason I love meditating...the feeling of weightlessness. example_title: emotion 1 - text: Beautiful sunset last night from the pontoon @TupperLakeNY example_title: emoji 1 model-index: - name: cardiffnlp/roberta-base-offensive results: - task: type: text-classification name: Text Classification dataset: name: tweet_eval type: offensive split: test metrics: - type: micro_f1_tweet_eval/offensive value: 0.8441860465116279 name: Micro F1 (tweet_eval/offensive) - type: micro_f1_tweet_eval/offensive value: 0.8038468085106383 name: Macro F1 (tweet_eval/offensive) - type: accuracy_tweet_eval/offensive value: 0.8441860465116279 name: Accuracy (tweet_eval/offensive) - task: type: text-classification name: Text Classification dataset: name: tweet_eval type: tweet_eval config: offensive split: train metrics: - type: accuracy value: 0.8775595837529372 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTQ3ZjIwZDAyZDc5MmU0ZWE3Mjg3MGZkMzJjYTA4ODYxMmI1NmUyNWUyMWQwYjhhOThiMjVlYzcwMTIyYWE3NiIsInZlcnNpb24iOjF9.FGKrLdRO1Iljnac-g6wty0HrcE5vwfHpWzRtzm-lPKsInyrGbtFC6mh6fpWHquoKZN_XVD-3Ju1ivROv3PsYDA - type: f1 value: 0.8617195443801995 name: F1 Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmE2MTJkNjUzOTczN2NkNzFmZmFkMmVlNzNkMTQxNThmYjY1NDJmYjI2MjJhZjc2M2I1OTJlYjg3ODQ5NTAwYiIsInZlcnNpb24iOjF9.JyPCbdFBiSnKAHO_fpGPKolFfS-QxCmgGILFTtRsO0yr53SFWZzvuWU3LF4eG_EkCskOCkhzJHe9ydFScf1cCg - type: f1 value: 0.8775595837529372 name: F1 Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWJjZDdiNGQxYTEzOWM1ZWU2NzI5MDkyNmQ2NjNhYWMzZmUyMmU4YWYyMjQ3ZjlkNDFhNGFiZmM0ZjEyMmE0MSIsInZlcnNpb24iOjF9.h4RE_k9PKIV2aoJxt9K_hStetS0jvvnZuumo6EWqZek1jrVdNCw8hecEfpDxCMuV1nJG_Nb1Qb2CPHaehoiaAA - type: f1 value: 0.8775635113600219 name: F1 Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjczZjlhOTlmOTYyOGZkODFhMzBkNThjNmQ3ZTVhZTY0ZTQ2YWY3YTY4ZDU1M2E5ZmEyMmFmODI2NjJjMTc5YiIsInZlcnNpb24iOjF9.LNoaYMgzp63FR4pgt49Bi-6Fwb7ocicdGesMntzBV9Y_eNl7f4Jx-Jl1V8jjB-Mas_Fj1BHqYgmVnsokZEnDCA - type: precision value: 0.8616963464593261 name: Precision Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWQ2MmI4YTI2NThlMDExODhkYzVhOGY4NmFlNjAxMzNjOTQ2NzNjYTBhYmM2NGRkYzIyYTEwYmQ2MDhhYzc5MyIsInZlcnNpb24iOjF9.dcwR0Y2MUzNt_-YSNFyLzxsVzCAglflGeLEm1EhQ2xU9cOpxKmGOADEETRVN-s8Qo-rfR0UTLBf8s1m_AJ01Bg - type: precision value: 0.8775595837529372 name: Precision Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjdlN2VhNjllYjNhMDM1NmQwZGVkMTZiZjY1ZjgxNDZlMDRlZjY2NGE2NzkwOTIwMzBlODQ1NTIwOTUzODVhMiIsInZlcnNpb24iOjF9.bMukPZRCgLsH5bRqkUys1DjubnLFh39mj0JEmWkGNPKNqgRq11IDsHpMICK2l8_kW25_wpiThELRXlYWI8L6CA - type: precision value: 0.8775674524222297 name: Precision Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWU2NDE3NzkxYjFlNDM3ZmI4MzQwYTVjOWVkY2Q3MTIwZGVlZTUzYzBkNGFmMjU4ODVlZTQwYTdlYzBlNDRjNSIsInZlcnNpb24iOjF9.PLj9bhs5wyqcANvgiYVbf8Gnpkn7H1IWg7lUjXez60QxfOcN0LdXbGttxu_y13Q41mbF4RW9MkC_OlVgxgiOBw - type: recall value: 0.8617427589865883 name: Recall Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzllZDBjMGY2ZTYyYTA5ODc4NjU1NWZkYTM4MWZlMDFkNjJhYTg3MTYwODYyZDYwYzc5MDliMTAzM2Q2NTk4YyIsInZlcnNpb24iOjF9.PUlMOsCQrowlUu1GGR9T2Hd50cOLsQHwu1FuwiLvWB25fLJYjFGTIai0UdBmtlTSKmviye_QzXrX1H_dJUAkBA - type: recall value: 0.8775595837529372 name: Recall Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjhkMzYxMWNmZjYxYTE2N2JjMjRhOWQ4YjZhMzI3NWU2YWI2ODI2MGViZmE0M2NkYjdmYmRmNTBkMjkwOTVlNiIsInZlcnNpb24iOjF9.PT7NY-polKG346y1T7fq1vC_wtzI_niOFeIuCZqXbexwnmtPKQYZGW8ag3690u4D_8wP9KQlJuPimiiO5OzRBg - type: recall value: 0.8775595837529372 name: Recall Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmY5M2RkZmU2ZDQyNzIzYjA4MGY3MTZmMGViYTU3OWI4ODFlN2VhOWVhYWEwN2VkOWM3YTQ0ODU3NDk5MzNkMSIsInZlcnNpb24iOjF9.U1k9ishrbEKkcceXP-FgodUG-GbE-g1B1tK-hCpZNpCYKicZrxI7Ft5fNZ9jGjO8_eRZNpL8o1DYmON2-kjFBw - type: loss value: 0.31321173906326294 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWMwYzM0MTg5YWEzYjBmMTg2NjgwMDc5NDY5NmQ4NWU1MjNjMTE4NzNmMDZmNWQzZGNlZDc3NGZjNzQzZTVjNiIsInZlcnNpb24iOjF9.YGXjIov_YlgdewGVUVySHZwVd874bUxvAkHcNXYf3j_at4DB14V1KLXmts0xXyHz0iTqJPjS6frr0aTHcixvBA --- # cardiffnlp/roberta-base-offensive This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the [`tweet_eval (offensive)`](https://huggingface.co/datasets/tweet_eval) via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). Training split is `train` and parameters have been tuned on the validation split `validation`. Following metrics are achieved on the test split `test` ([link](https://huggingface.co/cardiffnlp/roberta-base-offensive/raw/main/metric.json)). - F1 (micro): 0.8441860465116279 - F1 (macro): 0.8038468085106383 - Accuracy: 0.8441860465116279 ### Usage Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.Classifier("cardiffnlp/roberta-base-offensive", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') ``` ### Reference ``` @inproceedings{camacho-collados-etal-2022-tweetnlp, title={{T}weet{NLP}: {C}utting-{E}dge {N}atural {L}anguage {P}rocessing for {S}ocial {M}edia}, author={Camacho-Collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa-Anke, Luis and Liu, Fangyu and Mart{'\i}nez-C{'a}mara, Eugenio and others}, author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = nov, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```