--- license: apache-2.0 language: - en library_name: transformers --- # ModernBERT Environment Claims Classifier This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) trained on the [QuotaClimat FrugalAIChallenge dataset](https://huggingface.co/datasets/QuotaClimat/frugalaichallenge-text-train). ## Training Details The model was trained using the following configuration: ```python training_args = TrainingArguments( output_dir="ModernBERT-envclaims-v0", per_device_train_batch_size=32, per_device_eval_batch_size=16, learning_rate=2e-5, num_train_epochs=3, bf16=True, optim="adamw_torch_fused", # Logging & Evaluation logging_strategy="steps", logging_steps=100, eval_strategy="epoch", save_strategy="epoch", save_total_limit=2, load_best_model_at_end=True, metric_for_best_model="f1", # Training optimization weight_decay=0.01, lr_scheduler_type="cosine", warmup_ratio=0.1, # Hub parameters push_to_hub=True, hub_strategy="every_save" ) ``` ## Model Performance The model achieved an F1 score of 0.76 on the evaluation set. ## Usage You can use this model directly with the Hugging Face Transformers library: ```python from transformers import pipeline classifier = pipeline( "text-classification", modelcamillebrl/ModernBERT-envclaims-v1" ) text = "Your claim here" class_predicted = classifier(text) ``` The model classifies texts into the following categories: * Label 0: not_relevant * Label 1: not_happening * Label 2: not_human * Label 3: not_bad * Label 4: solutions_harmful_unnecessary * Label 5: science_unreliable * Label 6: proponents_biased * Label 7: fossil_fuels_needed