--- language: en library_name: clinicadl tags: - clinicadl license: mit --- # Model Card for maps-test This model was trained with ClinicaDL. You can find here the ## General information ## Architecture This model was trained for **classification** and the architecture chosen is **Conv4_FC3**. **dropout**: 0.0 **latent_space_size**: 2 **feature_size**: 1024 **n_conv**: 4 **io_layer_channels**: 8 **recons_weight**: 1 **kl_weight**: 1 **normalization**: batch **architecture**: Conv4_FC3 **multi_network**: False **dropout**: 0.0 **latent_space_dimension**: 64 **latent_space_size**: 2 **selection_metrics**: ['loss'] **label**: diagnosis **selection_threshold**: 0.0 **gpu**: True **n_proc**: 32 **batch_size**: 32 **evaluation_steps**: 20 **seed**: 0 **deterministic**: False **compensation**: memory **transfer_path**: ../../autoencoders/exp3/maps **transfer_selection_metric**: loss **use_extracted_features**: False **multi_cohort**: False **diagnoses**: ['AD', 'CN'] **baseline**: True **normalize**: True **data_augmentation**: False **sampler**: random **n_splits**: 5 **epochs**: 200 **learning_rate**: 1e-05 **weight_decay**: 0.0001 **patience**: 10 **tolerance**: 0.0 **accumulation_steps**: 1 **optimizer**: Adam **preprocessing_dict**: {'preprocessing': 't1-linear', 'mode': 'roi', 'use_uncropped_image': False, 'roi_list': ['leftHippocampusBox', 'rightHippocampusBox'], 'uncropped_roi': False, 'prepare_dl': False, 'file_type': {'pattern': '*space-MNI152NLin2009cSym_desc-Crop_res-1x1x1_T1w.nii.gz', 'description': 'T1W Image registered using t1-linear and cropped (matrix size 169×208×179, 1 mm isotropic voxels)', 'needed_pipeline': 't1-linear'}} **mode**: roi **network_task**: classification **caps_directory**: $WORK/../commun/datasets/adni/caps/caps_v2021 **tsv_path**: $WORK/Aramis_tools/ClinicaDL_tools/experiments_ADDL/data/ADNI/train **validation**: KFoldSplit **num_networks**: 2 **label_code**: {'AD': 0, 'CN': 1} **output_size**: 2 **input_size**: [1, 50, 50, 50] **loss**: None