# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp from functools import wraps import mmcv import numpy as np from PIL import Image from mmpose.core import SimpleCamera def _keypoint_camera_to_world(keypoints, camera_params, image_name=None, dataset='Body3DH36MDataset'): """Project 3D keypoints from the camera space to the world space. Args: keypoints (np.ndarray): 3D keypoints in shape [..., 3] camera_params (dict): Parameters for all cameras. image_name (str): The image name to specify the camera. dataset (str): The dataset type, e.g., Body3DH36MDataset. """ cam_key = None if dataset == 'Body3DH36MDataset': subj, rest = osp.basename(image_name).split('_', 1) _, rest = rest.split('.', 1) camera, rest = rest.split('_', 1) cam_key = (subj, camera) else: raise NotImplementedError camera = SimpleCamera(camera_params[cam_key]) keypoints_world = keypoints.copy() keypoints_world[..., :3] = camera.camera_to_world(keypoints[..., :3]) return keypoints_world def _get_bbox_xywh(center, scale, w=200, h=200): w = w * scale h = h * scale x = center[0] - w / 2 y = center[1] - h / 2 return [x, y, w, h] def mmcv_track_func(func): @wraps(func) def wrapped_func(args): return func(*args) return wrapped_func @mmcv_track_func def _get_img_info(img_idx, img_name, img_root): try: im = Image.open(osp.join(img_root, img_name)) w, h = im.size except: # noqa: E722 return None img = { 'file_name': img_name, 'height': h, 'width': w, 'id': img_idx + 1, } return img @mmcv_track_func def _get_ann(idx, kpt_2d, kpt_3d, center, scale, imgname, camera_params): bbox = _get_bbox_xywh(center, scale) kpt_3d = _keypoint_camera_to_world(kpt_3d, camera_params, imgname) ann = { 'id': idx + 1, 'category_id': 1, 'image_id': idx + 1, 'iscrowd': 0, 'bbox': bbox, 'area': bbox[2] * bbox[3], 'num_keypoints': 17, 'keypoints': kpt_2d.reshape(-1).tolist(), 'keypoints_3d': kpt_3d.reshape(-1).tolist() } return ann def main(): parser = argparse.ArgumentParser() parser.add_argument( '--ann-file', type=str, default='tests/data/h36m/test_h36m_body3d.npz') parser.add_argument( '--camera-param-file', type=str, default='tests/data/h36m/cameras.pkl') parser.add_argument('--img-root', type=str, default='tests/data/h36m') parser.add_argument( '--out-file', type=str, default='tests/data/h36m/h36m_coco.json') parser.add_argument('--full-img-name', action='store_true') args = parser.parse_args() h36m_data = np.load(args.ann_file) h36m_camera_params = mmcv.load(args.camera_param_file) h36m_coco = {} # categories h36m_cats = [{ 'supercategory': 'person', 'id': 1, 'name': 'person', 'keypoints': [ 'root (pelvis)', 'left_hip', 'left_knee', 'left_foot', 'right_hip', 'right_knee', 'right_foot', 'spine', 'thorax', 'neck_base', 'head', 'left_shoulder', 'left_elbow', 'left_wrist', 'right_shoulder', 'right_elbow', 'right_wrist' ], 'skeleton': [[0, 1], [1, 2], [2, 3], [0, 4], [4, 5], [5, 6], [0, 7], [7, 8], [8, 9], [9, 10], [8, 11], [11, 12], [12, 13], [8, 14], [14, 15], [15, 16]], }] # images imgnames = h36m_data['imgname'] if not args.full_img_name: imgnames = [osp.basename(fn) for fn in imgnames] tasks = [(idx, fn, args.img_root) for idx, fn in enumerate(imgnames)] h36m_imgs = mmcv.track_parallel_progress(_get_img_info, tasks, nproc=12) # annotations kpts_2d = h36m_data['part'] kpts_3d = h36m_data['S'] centers = h36m_data['center'] scales = h36m_data['scale'] tasks = [(idx, ) + args + (h36m_camera_params, ) for idx, args in enumerate( zip(kpts_2d, kpts_3d, centers, scales, imgnames))] h36m_anns = mmcv.track_parallel_progress(_get_ann, tasks, nproc=12) # remove invalid data h36m_imgs = [img for img in h36m_imgs if img is not None] h36m_img_ids = set([img['id'] for img in h36m_imgs]) h36m_anns = [ann for ann in h36m_anns if ann['image_id'] in h36m_img_ids] h36m_coco = { 'categories': h36m_cats, 'images': h36m_imgs, 'annotations': h36m_anns, } mmcv.dump(h36m_coco, args.out_file) if __name__ == '__main__': main()