# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmpose.models.backbones.pvt import (PVTEncoderLayer, PyramidVisionTransformer, PyramidVisionTransformerV2) def test_pvt_block(): # test PVT structure and forward block = PVTEncoderLayer( embed_dims=64, num_heads=4, feedforward_channels=256) assert block.ffn.embed_dims == 64 assert block.attn.num_heads == 4 assert block.ffn.feedforward_channels == 256 x = torch.randn(1, 56 * 56, 64) x_out = block(x, (56, 56)) assert x_out.shape == torch.Size([1, 56 * 56, 64]) def test_pvt(): """Test PVT backbone.""" with pytest.raises(TypeError): # Pretrained arg must be str or None. PyramidVisionTransformer(pretrained=123) # test pretrained image size with pytest.raises(AssertionError): PyramidVisionTransformer(pretrain_img_size=(224, 224, 224)) # test padding model = PyramidVisionTransformer( paddings=['corner', 'corner', 'corner', 'corner']) temp = torch.randn((1, 3, 32, 32)) outs = model(temp) assert outs[0].shape == (1, 64, 8, 8) assert outs[1].shape == (1, 128, 4, 4) assert outs[2].shape == (1, 320, 2, 2) assert outs[3].shape == (1, 512, 1, 1) # Test absolute position embedding temp = torch.randn((1, 3, 224, 224)) model = PyramidVisionTransformer( pretrain_img_size=224, use_abs_pos_embed=True) model.init_weights() model(temp) # Test normal inference temp = torch.randn((1, 3, 32, 32)) model = PyramidVisionTransformer() outs = model(temp) assert outs[0].shape == (1, 64, 8, 8) assert outs[1].shape == (1, 128, 4, 4) assert outs[2].shape == (1, 320, 2, 2) assert outs[3].shape == (1, 512, 1, 1) # Test abnormal inference size temp = torch.randn((1, 3, 33, 33)) model = PyramidVisionTransformer() outs = model(temp) assert outs[0].shape == (1, 64, 8, 8) assert outs[1].shape == (1, 128, 4, 4) assert outs[2].shape == (1, 320, 2, 2) assert outs[3].shape == (1, 512, 1, 1) # Test abnormal inference size temp = torch.randn((1, 3, 112, 137)) model = PyramidVisionTransformer() outs = model(temp) assert outs[0].shape == (1, 64, 28, 34) assert outs[1].shape == (1, 128, 14, 17) assert outs[2].shape == (1, 320, 7, 8) assert outs[3].shape == (1, 512, 3, 4) def test_pvtv2(): """Test PVTv2 backbone.""" with pytest.raises(TypeError): # Pretrained arg must be str or None. PyramidVisionTransformerV2(pretrained=123) # test pretrained image size with pytest.raises(AssertionError): PyramidVisionTransformerV2(pretrain_img_size=(224, 224, 224)) # test load pretrained weights model = PyramidVisionTransformerV2( embed_dims=32, num_layers=[2, 2, 2, 2], pretrained='https://github.com/whai362/PVT/' 'releases/download/v2/pvt_v2_b0.pth') model.init_weights() # test init_cfg model = PyramidVisionTransformerV2( embed_dims=32, num_layers=[2, 2, 2, 2], init_cfg=dict(checkpoint='https://github.com/whai362/PVT/' 'releases/download/v2/pvt_v2_b0.pth')) model.init_weights() # test init weights from scratch model = PyramidVisionTransformerV2(embed_dims=32, num_layers=[2, 2, 2, 2]) model.init_weights() # Test normal inference temp = torch.randn((1, 3, 32, 32)) model = PyramidVisionTransformerV2() outs = model(temp) assert outs[0].shape == (1, 64, 8, 8) assert outs[1].shape == (1, 128, 4, 4) assert outs[2].shape == (1, 320, 2, 2) assert outs[3].shape == (1, 512, 1, 1) # Test abnormal inference size temp = torch.randn((1, 3, 31, 31)) model = PyramidVisionTransformerV2() outs = model(temp) assert outs[0].shape == (1, 64, 8, 8) assert outs[1].shape == (1, 128, 4, 4) assert outs[2].shape == (1, 320, 2, 2) assert outs[3].shape == (1, 512, 1, 1) # Test abnormal inference size temp = torch.randn((1, 3, 112, 137)) model = PyramidVisionTransformerV2() outs = model(temp) assert outs[0].shape == (1, 64, 28, 35) assert outs[1].shape == (1, 128, 14, 18) assert outs[2].shape == (1, 320, 7, 9) assert outs[3].shape == (1, 512, 4, 5)