// Tencent is pleased to support the open source community by making ncnn available. // // Copyright (C) 2018 THL A29 Limited, a Tencent company. All rights reserved. // // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // https://opensource.org/licenses/BSD-3-Clause // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #include "net.h" #include #if defined(USE_NCNN_SIMPLEOCV) #include "simpleocv.h" #else #include #include #include #endif #include struct Object { cv::Rect_ rect; int label; float prob; }; static inline float intersection_area(const Object& a, const Object& b) { cv::Rect_ inter = a.rect & b.rect; return inter.area(); } static void qsort_descent_inplace(std::vector& objects, int left, int right) { int i = left; int j = right; float p = objects[(left + right) / 2].prob; while (i <= j) { while (objects[i].prob > p) i++; while (objects[j].prob < p) j--; if (i <= j) { // swap std::swap(objects[i], objects[j]); i++; j--; } } #pragma omp parallel sections { #pragma omp section { if (left < j) qsort_descent_inplace(objects, left, j); } #pragma omp section { if (i < right) qsort_descent_inplace(objects, i, right); } } } static void qsort_descent_inplace(std::vector& objects) { if (objects.empty()) return; qsort_descent_inplace(objects, 0, objects.size() - 1); } static void nms_sorted_bboxes(const std::vector& faceobjects, std::vector& picked, float nms_threshold, bool agnostic = false) { picked.clear(); const int n = faceobjects.size(); std::vector areas(n); for (int i = 0; i < n; i++) { areas[i] = faceobjects[i].rect.area(); } for (int i = 0; i < n; i++) { const Object& a = faceobjects[i]; int keep = 1; for (int j = 0; j < (int)picked.size(); j++) { const Object& b = faceobjects[picked[j]]; if (!agnostic && a.label != b.label) continue; // intersection over union float inter_area = intersection_area(a, b); float union_area = areas[i] + areas[picked[j]] - inter_area; // float IoU = inter_area / union_area if (inter_area / union_area > nms_threshold) keep = 0; } if (keep) picked.push_back(i); } } static int detect_fasterrcnn(const cv::Mat& bgr, std::vector& objects) { ncnn::Net fasterrcnn; fasterrcnn.opt.use_vulkan_compute = true; // original pretrained model from https://github.com/rbgirshick/py-faster-rcnn // py-faster-rcnn/models/pascal_voc/ZF/faster_rcnn_alt_opt/faster_rcnn_test.pt // https://dl.dropboxusercontent.com/s/o6ii098bu51d139/faster_rcnn_models.tgz?dl=0 // ZF_faster_rcnn_final.caffemodel // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models if (fasterrcnn.load_param("ZF_faster_rcnn_final.param")) exit(-1); if (fasterrcnn.load_model("ZF_faster_rcnn_final.bin")) exit(-1); // hyper parameters taken from // py-faster-rcnn/lib/fast_rcnn/config.py // py-faster-rcnn/lib/fast_rcnn/test.py const int target_size = 600; // __C.TEST.SCALES const int max_per_image = 100; const float confidence_thresh = 0.05f; const float nms_threshold = 0.3f; // __C.TEST.NMS // scale to target detect size int w = bgr.cols; int h = bgr.rows; float scale = 1.f; if (w < h) { scale = (float)target_size / w; w = target_size; h = h * scale; } else { scale = (float)target_size / h; h = target_size; w = w * scale; } ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, bgr.cols, bgr.rows, w, h); const float mean_vals[3] = {102.9801f, 115.9465f, 122.7717f}; in.substract_mean_normalize(mean_vals, 0); ncnn::Mat im_info(3); im_info[0] = h; im_info[1] = w; im_info[2] = scale; // step1, extract feature and all rois ncnn::Extractor ex1 = fasterrcnn.create_extractor(); ex1.input("data", in); ex1.input("im_info", im_info); ncnn::Mat conv5_relu5; // feature ncnn::Mat rois; // all rois ex1.extract("conv5_relu5", conv5_relu5); ex1.extract("rois", rois); // step2, extract bbox and score for each roi std::vector > class_candidates; for (int i = 0; i < rois.c; i++) { ncnn::Extractor ex2 = fasterrcnn.create_extractor(); ncnn::Mat roi = rois.channel(i); // get single roi ex2.input("conv5_relu5", conv5_relu5); ex2.input("rois", roi); ncnn::Mat bbox_pred; ncnn::Mat cls_prob; ex2.extract("bbox_pred", bbox_pred); ex2.extract("cls_prob", cls_prob); int num_class = cls_prob.w; class_candidates.resize(num_class); // find class id with highest score int label = 0; float score = 0.f; for (int i = 0; i < num_class; i++) { float class_score = cls_prob[i]; if (class_score > score) { label = i; score = class_score; } } // ignore background or low score if (label == 0 || score <= confidence_thresh) continue; // fprintf(stderr, "%d = %f\n", label, score); // unscale to image size float x1 = roi[0] / scale; float y1 = roi[1] / scale; float x2 = roi[2] / scale; float y2 = roi[3] / scale; float pb_w = x2 - x1 + 1; float pb_h = y2 - y1 + 1; // apply bbox regression float dx = bbox_pred[label * 4]; float dy = bbox_pred[label * 4 + 1]; float dw = bbox_pred[label * 4 + 2]; float dh = bbox_pred[label * 4 + 3]; float cx = x1 + pb_w * 0.5f; float cy = y1 + pb_h * 0.5f; float obj_cx = cx + pb_w * dx; float obj_cy = cy + pb_h * dy; float obj_w = pb_w * exp(dw); float obj_h = pb_h * exp(dh); float obj_x1 = obj_cx - obj_w * 0.5f; float obj_y1 = obj_cy - obj_h * 0.5f; float obj_x2 = obj_cx + obj_w * 0.5f; float obj_y2 = obj_cy + obj_h * 0.5f; // clip obj_x1 = std::max(std::min(obj_x1, (float)(bgr.cols - 1)), 0.f); obj_y1 = std::max(std::min(obj_y1, (float)(bgr.rows - 1)), 0.f); obj_x2 = std::max(std::min(obj_x2, (float)(bgr.cols - 1)), 0.f); obj_y2 = std::max(std::min(obj_y2, (float)(bgr.rows - 1)), 0.f); // append object Object obj; obj.rect = cv::Rect_(obj_x1, obj_y1, obj_x2 - obj_x1 + 1, obj_y2 - obj_y1 + 1); obj.label = label; obj.prob = score; class_candidates[label].push_back(obj); } // post process objects.clear(); for (int i = 0; i < (int)class_candidates.size(); i++) { std::vector& candidates = class_candidates[i]; qsort_descent_inplace(candidates); std::vector picked; nms_sorted_bboxes(candidates, picked, nms_threshold); for (int j = 0; j < (int)picked.size(); j++) { int z = picked[j]; objects.push_back(candidates[z]); } } qsort_descent_inplace(objects); if (max_per_image > 0 && max_per_image < objects.size()) { objects.resize(max_per_image); } return 0; } static void draw_objects(const cv::Mat& bgr, const std::vector& objects) { static const char* class_names[] = {"background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor" }; cv::Mat image = bgr.clone(); for (size_t i = 0; i < objects.size(); i++) { const Object& obj = objects[i]; fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob, obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height); cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0)); char text[256]; sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100); int baseLine = 0; cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); int x = obj.rect.x; int y = obj.rect.y - label_size.height - baseLine; if (y < 0) y = 0; if (x + label_size.width > image.cols) x = image.cols - label_size.width; cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)), cv::Scalar(255, 255, 255), -1); cv::putText(image, text, cv::Point(x, y + label_size.height), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0)); } cv::imshow("image", image); cv::waitKey(0); } int main(int argc, char** argv) { if (argc != 2) { fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]); return -1; } const char* imagepath = argv[1]; cv::Mat m = cv::imread(imagepath, 1); if (m.empty()) { fprintf(stderr, "cv::imread %s failed\n", imagepath); return -1; } std::vector objects; detect_fasterrcnn(m, objects); draw_objects(m, objects); return 0; }