import webdataset as wds from PIL import Image import io import matplotlib.pyplot as plt import os import json from warnings import filterwarnings # os.environ["CUDA_VISIBLE_DEVICES"] = "0" # choose GPU if you are on a multi GPU server import numpy as np import torch import pytorch_lightning as pl import torch.nn as nn from torchvision import datasets, transforms import tqdm from os.path import join from datasets import load_dataset import pandas as pd from torch.utils.data import Dataset, DataLoader import json import clip #import open_clip from PIL import Image, ImageFile # if you changed the MLP architecture during training, change it also here: class MLP(pl.LightningModule): def __init__(self, input_size, xcol='emb', ycol='avg_rating'): super().__init__() self.input_size = input_size self.xcol = xcol self.ycol = ycol self.layers = nn.Sequential( nn.Linear(self.input_size, 1024), #nn.ReLU(), nn.Dropout(0.2), nn.Linear(1024, 128), #nn.ReLU(), nn.Dropout(0.2), nn.Linear(128, 64), #nn.ReLU(), nn.Dropout(0.1), nn.Linear(64, 16), #nn.ReLU(), nn.Linear(16, 1) ) def forward(self, x): return self.layers(x) def training_step(self, batch, batch_idx): x = batch[self.xcol] y = batch[self.ycol].reshape(-1, 1) x_hat = self.layers(x) loss = F.mse_loss(x_hat, y) return loss def validation_step(self, batch, batch_idx): x = batch[self.xcol] y = batch[self.ycol].reshape(-1, 1) x_hat = self.layers(x) loss = F.mse_loss(x_hat, y) return loss def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=1e-3) return optimizer def normalized(a, axis=-1, order=2): import numpy as np # pylint: disable=import-outside-toplevel l2 = np.atleast_1d(np.linalg.norm(a, order, axis)) l2[l2 == 0] = 1 return a / np.expand_dims(l2, axis) model = MLP(768) # CLIP embedding dim is 768 for CLIP ViT L 14 s = torch.load("ava+logos-l14-linearMSE.pth") # load the model you trained previously or the model available in this repo model.load_state_dict(s) model.to("cuda") model.eval() device = "cuda" if torch.cuda.is_available() else "cpu" model2, preprocess = clip.load("ViT-L/14", device=device) #RN50x64 c=0 urls= [] predictions=[] # this will run inference over 10 webdataset tar files from LAION 400M and sort them into 20 categories # you can DL LAION 400M and convert it to wds tar files with img2dataset ( https://github.com/rom1504/img2dataset ) for j in range(10): if j<10: # change the path to the tar files accordingly dataset = wds.WebDataset("pipe:aws s3 cp s3://s-datasets/laion400m/laion400m-dat-release/0000"+str(j)+".tar -") #"pipe:aws s3 cp s3://s-datasets/laion400m/laion400m-dat-release/00625.tar -") else: dataset = wds.WebDataset("pipe:aws s3 cp s3://s-datasets/laion400m/laion400m-dat-release/000"+str(j)+".tar -") #"pipe:aws s3 cp s3://s-datasets/laion400m/laion400m-dat-release/00625.tar -") for i, d in enumerate(dataset): print(c) metadata= json.loads(d['json']) pil_image = Image.open(io.BytesIO(d['jpg'])) c=c+1 try: image = preprocess(pil_image).unsqueeze(0).to(device) except: continue with torch.no_grad(): image_features = model2.encode_image(image) im_emb_arr = normalized(image_features.cpu().detach().numpy() ) prediction = model(torch.from_numpy(im_emb_arr).to(device).type(torch.cuda.FloatTensor)) urls.append(metadata["url"]) predictions.append(prediction) df = pd.DataFrame(list(zip(urls, predictions)), columns =['filepath', 'prediction']) buckets = [(i, i+1) for i in range(20)] html= "

Aesthetic subsets in LAION 100k samples

" i =0 for [a,b] in buckets: a = a/2 b = b/2 total_part = df[( (df["prediction"] ) *1>= a) & ( (df["prediction"] ) *1 <= b)] print(a,b) print(len(total_part) ) count_part = len(total_part) / len(df) * 100 estimated =int ( len(total_part) ) part = total_part[:50] html+=f"

In bucket {a} - {b} there is {count_part:.2f}% samples:{estimated:.2f}

" for filepath in part["filepath"]: html+='' html+="
" i+=1 print(i) with open("./aesthetic_viz_laion_ava+logos_L14_100k-linearMSE.html", "w") as f: f.write(html)