from __future__ import print_function import os import sys import time import torch import math import numpy as np import cv2 def _gaussian( size=3, sigma=0.25, amplitude=1, normalize=False, width=None, height=None, sigma_horz=None, sigma_vert=None, mean_horz=0.5, mean_vert=0.5): # handle some defaults if width is None: width = size if height is None: height = size if sigma_horz is None: sigma_horz = sigma if sigma_vert is None: sigma_vert = sigma center_x = mean_horz * width + 0.5 center_y = mean_vert * height + 0.5 gauss = np.empty((height, width), dtype=np.float32) # generate kernel for i in range(height): for j in range(width): gauss[i][j] = amplitude * math.exp(-(math.pow((j + 1 - center_x) / ( sigma_horz * width), 2) / 2.0 + math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0)) if normalize: gauss = gauss / np.sum(gauss) return gauss def draw_gaussian(image, point, sigma): # Check if the gaussian is inside ul = [math.floor(point[0] - 3 * sigma), math.floor(point[1] - 3 * sigma)] br = [math.floor(point[0] + 3 * sigma), math.floor(point[1] + 3 * sigma)] if (ul[0] > image.shape[1] or ul[1] > image.shape[0] or br[0] < 1 or br[1] < 1): return image size = 6 * sigma + 1 g = _gaussian(size) g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))] g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))] img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))] img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))] assert (g_x[0] > 0 and g_y[1] > 0) image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1] ] = image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]] image[image > 1] = 1 return image def transform(point, center, scale, resolution, invert=False): """Generate and affine transformation matrix. Given a set of points, a center, a scale and a targer resolution, the function generates and affine transformation matrix. If invert is ``True`` it will produce the inverse transformation. Arguments: point {torch.tensor} -- the input 2D point center {torch.tensor or numpy.array} -- the center around which to perform the transformations scale {float} -- the scale of the face/object resolution {float} -- the output resolution Keyword Arguments: invert {bool} -- define wherever the function should produce the direct or the inverse transformation matrix (default: {False}) """ _pt = torch.ones(3) _pt[0] = point[0] _pt[1] = point[1] h = 200.0 * scale t = torch.eye(3) t[0, 0] = resolution / h t[1, 1] = resolution / h t[0, 2] = resolution * (-center[0] / h + 0.5) t[1, 2] = resolution * (-center[1] / h + 0.5) if invert: t = torch.inverse(t) new_point = (torch.matmul(t, _pt))[0:2] return new_point.int() def crop(image, center, scale, resolution=256.0): """Center crops an image or set of heatmaps Arguments: image {numpy.array} -- an rgb image center {numpy.array} -- the center of the object, usually the same as of the bounding box scale {float} -- scale of the face Keyword Arguments: resolution {float} -- the size of the output cropped image (default: {256.0}) Returns: [type] -- [description] """ # Crop around the center point """ Crops the image around the center. Input is expected to be an np.ndarray """ ul = transform([1, 1], center, scale, resolution, True) br = transform([resolution, resolution], center, scale, resolution, True) # pad = math.ceil(torch.norm((ul - br).float()) / 2.0 - (br[0] - ul[0]) / 2.0) if image.ndim > 2: newDim = np.array([br[1] - ul[1], br[0] - ul[0], image.shape[2]], dtype=np.int32) newImg = np.zeros(newDim, dtype=np.uint8) else: newDim = np.array([br[1] - ul[1], br[0] - ul[0]], dtype=np.int) newImg = np.zeros(newDim, dtype=np.uint8) ht = image.shape[0] wd = image.shape[1] newX = np.array( [max(1, -ul[0] + 1), min(br[0], wd) - ul[0]], dtype=np.int32) newY = np.array( [max(1, -ul[1] + 1), min(br[1], ht) - ul[1]], dtype=np.int32) oldX = np.array([max(1, ul[0] + 1), min(br[0], wd)], dtype=np.int32) oldY = np.array([max(1, ul[1] + 1), min(br[1], ht)], dtype=np.int32) newImg[newY[0] - 1:newY[1], newX[0] - 1:newX[1] ] = image[oldY[0] - 1:oldY[1], oldX[0] - 1:oldX[1], :] newImg = cv2.resize(newImg, dsize=(int(resolution), int(resolution)), interpolation=cv2.INTER_LINEAR) return newImg def get_preds_fromhm(hm, center=None, scale=None): """Obtain (x,y) coordinates given a set of N heatmaps. If the center and the scale is provided the function will return the points also in the original coordinate frame. Arguments: hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H] Keyword Arguments: center {torch.tensor} -- the center of the bounding box (default: {None}) scale {float} -- face scale (default: {None}) """ max, idx = torch.max( hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2) idx += 1 preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float() preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1) preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1) for i in range(preds.size(0)): for j in range(preds.size(1)): hm_ = hm[i, j, :] pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1 if pX > 0 and pX < 63 and pY > 0 and pY < 63: diff = torch.FloatTensor( [hm_[pY, pX + 1] - hm_[pY, pX - 1], hm_[pY + 1, pX] - hm_[pY - 1, pX]]) preds[i, j].add_(diff.sign_().mul_(.25)) preds.add_(-.5) preds_orig = torch.zeros(preds.size()) if center is not None and scale is not None: for i in range(hm.size(0)): for j in range(hm.size(1)): preds_orig[i, j] = transform( preds[i, j], center, scale, hm.size(2), True) return preds, preds_orig def get_preds_fromhm_batch(hm, centers=None, scales=None): """Obtain (x,y) coordinates given a set of N heatmaps. If the centers and the scales is provided the function will return the points also in the original coordinate frame. Arguments: hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H] Keyword Arguments: centers {torch.tensor} -- the centers of the bounding box (default: {None}) scales {float} -- face scales (default: {None}) """ max, idx = torch.max( hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2) idx += 1 preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float() preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1) preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1) for i in range(preds.size(0)): for j in range(preds.size(1)): hm_ = hm[i, j, :] pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1 if pX > 0 and pX < 63 and pY > 0 and pY < 63: diff = torch.FloatTensor( [hm_[pY, pX + 1] - hm_[pY, pX - 1], hm_[pY + 1, pX] - hm_[pY - 1, pX]]) preds[i, j].add_(diff.sign_().mul_(.25)) preds.add_(-.5) preds_orig = torch.zeros(preds.size()) if centers is not None and scales is not None: for i in range(hm.size(0)): for j in range(hm.size(1)): preds_orig[i, j] = transform( preds[i, j], centers[i], scales[i], hm.size(2), True) return preds, preds_orig def shuffle_lr(parts, pairs=None): """Shuffle the points left-right according to the axis of symmetry of the object. Arguments: parts {torch.tensor} -- a 3D or 4D object containing the heatmaps. Keyword Arguments: pairs {list of integers} -- [order of the flipped points] (default: {None}) """ if pairs is None: pairs = [16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 27, 28, 29, 30, 35, 34, 33, 32, 31, 45, 44, 43, 42, 47, 46, 39, 38, 37, 36, 41, 40, 54, 53, 52, 51, 50, 49, 48, 59, 58, 57, 56, 55, 64, 63, 62, 61, 60, 67, 66, 65] if parts.ndimension() == 3: parts = parts[pairs, ...] else: parts = parts[:, pairs, ...] return parts def flip(tensor, is_label=False): """Flip an image or a set of heatmaps left-right Arguments: tensor {numpy.array or torch.tensor} -- [the input image or heatmaps] Keyword Arguments: is_label {bool} -- [denote wherever the input is an image or a set of heatmaps ] (default: {False}) """ if not torch.is_tensor(tensor): tensor = torch.from_numpy(tensor) if is_label: tensor = shuffle_lr(tensor).flip(tensor.ndimension() - 1) else: tensor = tensor.flip(tensor.ndimension() - 1) return tensor # From pyzolib/paths.py (https://bitbucket.org/pyzo/pyzolib/src/tip/paths.py) def appdata_dir(appname=None, roaming=False): """ appdata_dir(appname=None, roaming=False) Get the path to the application directory, where applications are allowed to write user specific files (e.g. configurations). For non-user specific data, consider using common_appdata_dir(). If appname is given, a subdir is appended (and created if necessary). If roaming is True, will prefer a roaming directory (Windows Vista/7). """ # Define default user directory userDir = os.getenv('FACEALIGNMENT_USERDIR', None) if userDir is None: userDir = os.path.expanduser('~') if not os.path.isdir(userDir): # pragma: no cover userDir = '/var/tmp' # issue #54 # Get system app data dir path = None if sys.platform.startswith('win'): path1, path2 = os.getenv('LOCALAPPDATA'), os.getenv('APPDATA') path = (path2 or path1) if roaming else (path1 or path2) elif sys.platform.startswith('darwin'): path = os.path.join(userDir, 'Library', 'Application Support') # On Linux and as fallback if not (path and os.path.isdir(path)): path = userDir # Maybe we should store things local to the executable (in case of a # portable distro or a frozen application that wants to be portable) prefix = sys.prefix if getattr(sys, 'frozen', None): prefix = os.path.abspath(os.path.dirname(sys.executable)) for reldir in ('settings', '../settings'): localpath = os.path.abspath(os.path.join(prefix, reldir)) if os.path.isdir(localpath): # pragma: no cover try: open(os.path.join(localpath, 'test.write'), 'wb').close() os.remove(os.path.join(localpath, 'test.write')) except IOError: pass # We cannot write in this directory else: path = localpath break # Get path specific for this app if appname: if path == userDir: appname = '.' + appname.lstrip('.') # Make it a hidden directory path = os.path.join(path, appname) if not os.path.isdir(path): # pragma: no cover os.mkdir(path) # Done return path