# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # downloads the training/eval set for AISHELL Diarization. # the training dataset is around 170GiB, to skip pass the --skip_train flag. import argparse import glob import logging import os import tarfile from pathlib import Path import wget from sox import Transformer from nemo.collections.asr.parts.utils.manifest_utils import create_manifest train_url = "https://www.openslr.org/resources/111/train_{}.tar.gz" train_datasets = ["S", "M", "L"] eval_url = "https://www.openslr.org/resources/111/test.tar.gz" def extract_file(filepath: str, data_dir: str): try: tar = tarfile.open(filepath) tar.extractall(data_dir) tar.close() except Exception: logging.info("Not extracting. Maybe already there?") def __process_data(dataset_url: str, dataset_path: Path, manifest_output_path: Path): os.makedirs(dataset_path, exist_ok=True) tar_file_path = os.path.join(dataset_path, os.path.basename(dataset_url)) if not os.path.exists(tar_file_path): wget.download(dataset_url, tar_file_path) extract_file(tar_file_path, str(dataset_path)) wav_path = dataset_path / 'converted_wav/' extracted_dir = Path(tar_file_path).stem.replace('.tar', '') flac_path = dataset_path / (extracted_dir + '/wav/') __process_flac_audio(flac_path, wav_path) audio_files = [os.path.join(os.path.abspath(wav_path), file) for file in os.listdir(str(wav_path))] rttm_files = glob.glob(str(dataset_path / (extracted_dir + '/TextGrid/*.rttm'))) rttm_files = [os.path.abspath(file) for file in rttm_files] audio_list = dataset_path / 'audio_files.txt' rttm_list = dataset_path / 'rttm_files.txt' with open(audio_list, 'w') as f: f.write('\n'.join(audio_files)) with open(rttm_list, 'w') as f: f.write('\n'.join(rttm_files)) create_manifest( str(audio_list), manifest_output_path, rttm_path=str(rttm_list), ) def __process_flac_audio(flac_path, wav_path): os.makedirs(wav_path, exist_ok=True) flac_files = os.listdir(flac_path) for flac_file in flac_files: # Convert FLAC file to WAV id = Path(flac_file).stem wav_file = os.path.join(wav_path, id + ".wav") if not os.path.exists(wav_file): Transformer().build(os.path.join(flac_path, flac_file), wav_file) def main(): parser = argparse.ArgumentParser(description="Aishell Data download") parser.add_argument("--data_root", default='./', type=str) parser.add_argument("--output_manifest_path", default='aishell_diar_manifest.json', type=str) parser.add_argument("--skip_train", help="skip downloading the training dataset", action="store_true") args = parser.parse_args() data_root = Path(args.data_root) data_root.mkdir(exist_ok=True, parents=True) if not args.skip_train: for tag in train_datasets: dataset_url = train_url.format(tag) dataset_path = data_root / f'{tag}/' manifest_output_path = data_root / f'train_{tag}_manifest.json' __process_data( dataset_url=dataset_url, dataset_path=dataset_path, manifest_output_path=manifest_output_path ) # create test dataset dataset_path = data_root / f'eval/' manifest_output_path = data_root / f'eval_manifest.json' __process_data(dataset_url=eval_url, dataset_path=dataset_path, manifest_output_path=manifest_output_path) if __name__ == "__main__": main()