# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch.multiprocessing as mp from omegaconf.omegaconf import OmegaConf, open_dict from pytorch_lightning import Trainer from pytorch_lightning.plugins.environments import TorchElasticEnvironment from nemo.collections.nlp.models.language_modeling.megatron_t5_prompt_learning_model import ( MegatronT5PromptLearningModel, ) from nemo.collections.nlp.parts.nlp_overrides import ( GradScaler, NLPDDPStrategy, NLPSaveRestoreConnector, PipelineMixedPrecisionPlugin, ) from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager mp.set_start_method("spawn", force=True) """ This is an example of how to ptune/prompt-tune a pretrained T5 model. Be sure to use a .nemo T5 model with this code. If you've downloaded a model from NGC or are otherwise using a MegatronLM model, please use either megatron_ckpt_to_nemo.py or megatron_lm_ckpt_to_nemo.py found within this examples directory to convert your model to .nemo format. """ @hydra_runner(config_path="conf", config_name="megatron_t5_prompt_learning.yaml") def main(cfg) -> None: logging.info("\n\n************** Experiment configuration ***********") logging.info(f'\n{OmegaConf.to_yaml(cfg)}') plugins = [] strategy = NLPDDPStrategy(no_ddp_communication_hook=True, find_unused_parameters=False,) if cfg.trainer.precision == 16: scaler = GradScaler( init_scale=cfg.model.get('native_amp_init_scale', 2 ** 32), growth_interval=cfg.model.get('native_amp_growth_interval', 1000), hysteresis=cfg.model.get('hysteresis', 2), enabled=False if cfg.model.pipeline_model_parallel_size > 1 else True, # turn off the grad scale for pipeline parallel LM model ) plugins.append(PipelineMixedPrecisionPlugin(precision=cfg.trainer.precision, device='cuda', scaler=scaler)) if cfg.get('cluster_type', None) == 'BCP': plugins.append(TorchElasticEnvironment()) trainer = Trainer(plugins=plugins, strategy=strategy, **cfg.trainer) exp_manager(trainer, cfg.exp_manager) # hydra interpolation does not work here as the interpolation key is lost when PTL saves hparams with open_dict(cfg): cfg.model.precision = cfg.trainer.precision # load existing or init new soft prompt T5 model if cfg.model.get("restore_path", None): model = MegatronT5PromptLearningModel.restore_from( cfg.model.restore_path, cfg.model, trainer=trainer, save_restore_connector=NLPSaveRestoreConnector() ) else: model = MegatronT5PromptLearningModel(cfg.model, trainer=trainer) trainer.fit(model) if __name__ == '__main__': main()