This model provides a MobileBERT [(Sun et al., 2020)](https://arxiv.org/abs/2004.02984) fine-tuned on the SST data with three sentiments (0 -- negative, 1 -- neutral, and 2 -- positive). ## Example Usage Below, we provide illustrations on how to use this model to make sentiment predictions. ```python import torch from transformers import AutoTokenizer, AutoConfig, MobileBertForSequenceClassification # load model model_name = r'cambridgeltl/sst_mobilebert-uncased' tokenizer = AutoTokenizer.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name) model = MobileBertForSequenceClassification.from_pretrained(model_name, config=config) model.eval() ''' labels: 0 -- negative 1 -- neutral 2 -- positive ''' # prepare exemplar sentences batch_sentences = [ "in his first stab at the form , jacquot takes a slightly anarchic approach that works only sporadically .", "a valueless kiddie paean to pro basketball underwritten by the nba .", "a very well-made , funny and entertaining picture .", ] # prepare input inputs = tokenizer(batch_sentences, max_length=256, truncation=True, padding=True, return_tensors='pt') input_ids, attention_mask = inputs.input_ids, inputs.attention_mask # make predictions outputs = model(input_ids=input_ids, attention_mask=attention_mask) predictions = torch.argmax(outputs.logits, dim = -1) print (predictions) # tensor([1, 0, 2]) ``` ## Citation: If you find this model useful, please kindly cite our model as ```bibtex @misc{susstmobilebert, author = {Su, Yixuan}, title = {A MobileBERT Fine-tuned on SST}, howpublished = {\url{https://huggingface.co/cambridgeltl/sst_mobilebert-uncased}}, year = 2022 } ```