--- base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Pasivo ahorro y retiro job mejor atención y disponibilidad - text: Detractor ahorro y retiro ahorro y retiro premium La atenció telefónica no es buena solo habla una maquina y nunca responde una persona para que le ayude a uno y poder expresar lo que se necesita. - text: Detractor gestión patrimonial alto perfil Difícil hacer una gestión por la página. No he podido retirar un saldo porque no llevo carta y no me dicen qué hacer si esa empresa ya no existe - text: Detractor ahorro y retiro dynamic top POrque tengo una inversion y hace tiempo que no se contacta mi asesor conmigo, le escribí un correo hace unos días y no me contestó, cambie de celular y no he podido actiualizarlo, estoy buscando como sacar mi dinero de alla, por la mala experiencia. - text: Detractor ahorro y retiro pensionado Empecé el proceso en****, y terminé consiguiéndolo en el****, me dejé en el camino más de 250€ en llamadas desde España a Colombia, y cada mes me toca pagar para traer el dinero de mi pensión hasta España porque no hay convenios con los bancos, pierdes en el año más o menos el 80% de una mesada. inference: true model-index: - name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8823529411764706 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 4 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:----------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Construcción de mi pensión personas | | | Solución de ahorro e inversión personas | | | Cesantías Personas | | | Construcción de mi pensión empresas | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8824 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("camaosos/journey") # Run inference preds = model("Pasivo ahorro y retiro job mejor atención y disponibilidad") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 5 | 18.7576 | 169 | | Label | Training Sample Count | |:----------------------------------------|:----------------------| | Cesantías Personas | 1 | | Construcción de mi pensión empresas | 8 | | Construcción de mi pensión personas | 31 | | Solución de ahorro e inversión personas | 26 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (4, 4) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:-------:|:-------------:|:---------------:| | 0.0060 | 1 | 0.1959 | - | | 0.3012 | 50 | 0.196 | - | | 0.6024 | 100 | 0.0082 | - | | 0.9036 | 150 | 0.0016 | - | | 1.0 | 166 | - | 0.1009 | | 1.2048 | 200 | 0.0012 | - | | 1.5060 | 250 | 0.0012 | - | | 1.8072 | 300 | 0.0004 | - | | **2.0** | **332** | **-** | **0.095** | | 2.1084 | 350 | 0.0005 | - | | 2.4096 | 400 | 0.0004 | - | | 2.7108 | 450 | 0.0005 | - | | 3.0 | 498 | - | 0.1009 | | 3.0120 | 500 | 0.0005 | - | | 3.3133 | 550 | 0.0003 | - | | 3.6145 | 600 | 0.0003 | - | | 3.9157 | 650 | 0.0011 | - | | 4.0 | 664 | - | 0.1002 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.10 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.42.3 - PyTorch: 2.2.1+cu121 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```