--- library_name: transformers license: mit base_model: cardiffnlp/twitter-roberta-large-hate-latest tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-roberta-large-hate-latest-roman-urdu-fine-grained results: [] --- # twitter-roberta-large-hate-latest-roman-urdu-fine-grained This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-large-hate-latest) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8408 - Accuracy: 0.8023 - Precision: 0.7245 - Recall: 0.7129 - F1: 0.7177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9091 | 1.0 | 113 | 0.8078 | 0.7034 | 0.3788 | 0.4083 | 0.3878 | | 1.1008 | 2.0 | 226 | 0.9036 | 0.6510 | 0.2624 | 0.3397 | 0.2841 | | 0.7624 | 3.0 | 339 | 0.6444 | 0.7844 | 0.7015 | 0.6274 | 0.6544 | | 0.5512 | 4.0 | 452 | 0.5075 | 0.8342 | 0.7675 | 0.7453 | 0.7463 | | 0.5258 | 5.0 | 565 | 0.3519 | 0.8858 | 0.8263 | 0.8081 | 0.8163 | | 0.3489 | 6.0 | 678 | 0.3154 | 0.9011 | 0.8612 | 0.8260 | 0.8399 | | 0.3182 | 7.0 | 791 | 0.2394 | 0.9295 | 0.8985 | 0.8864 | 0.8895 | | 0.2263 | 8.0 | 904 | 0.1722 | 0.9502 | 0.9092 | 0.9223 | 0.9143 | | 0.2024 | 9.0 | 1017 | 0.1252 | 0.9684 | 0.9474 | 0.9441 | 0.9457 | | 0.1757 | 10.0 | 1130 | 0.1101 | 0.9736 | 0.9592 | 0.9506 | 0.9548 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0