--- library_name: transformers license: mit base_model: cardiffnlp/twitter-roberta-large-hate-latest tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-roberta-large-hate-latest-profanity-mr results: [] --- # twitter-roberta-large-hate-latest-profanity-mr This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-large-hate-latest) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3265 - Accuracy: 0.9035 - Precision: 0.4517 - Recall: 0.5 - F1: 0.4746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3253 | 0.9836 | 30 | 0.3848 | 0.8819 | 0.4410 | 0.5 | 0.4686 | | 0.3423 | 2.0 | 61 | 0.3673 | 0.8819 | 0.4410 | 0.5 | 0.4686 | | 0.3399 | 2.9836 | 91 | 0.3823 | 0.8819 | 0.4410 | 0.5 | 0.4686 | | 0.3248 | 4.0 | 122 | 0.3630 | 0.8819 | 0.4410 | 0.5 | 0.4686 | | 0.3 | 4.9836 | 152 | 0.3922 | 0.8819 | 0.4410 | 0.5 | 0.4686 | | 0.3094 | 6.0 | 183 | 0.3655 | 0.8819 | 0.4410 | 0.5 | 0.4686 | | 0.3009 | 6.9836 | 213 | 0.3835 | 0.8819 | 0.4410 | 0.5 | 0.4686 | | 0.2442 | 8.0 | 244 | 0.4946 | 0.7904 | 0.5976 | 0.6514 | 0.6105 | | 0.1438 | 8.9836 | 274 | 0.3878 | 0.8699 | 0.6590 | 0.5992 | 0.6179 | | 0.1372 | 9.8361 | 300 | 0.3606 | 0.8723 | 0.6665 | 0.6006 | 0.6207 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0