--- library_name: transformers license: mit base_model: cardiffnlp/twitter-roberta-large-hate-latest tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-roberta-large-hate-latest-offensive-eval-kn results: [] --- # twitter-roberta-large-hate-latest-offensive-eval-kn This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-large-hate-latest) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7861 - Accuracy: 0.7427 - Precision: 0.4604 - Recall: 0.3928 - F1: 0.3901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.8805 | 0.9968 | 157 | 0.8450 | 0.7339 | 0.3531 | 0.3488 | 0.3407 | | 0.7579 | 2.0 | 315 | 0.7816 | 0.7607 | 0.5057 | 0.4154 | 0.4200 | | 0.7177 | 2.9968 | 472 | 0.7848 | 0.7571 | 0.4702 | 0.4043 | 0.4209 | | 0.6914 | 4.0 | 630 | 0.8011 | 0.7446 | 0.4242 | 0.4029 | 0.4077 | | 0.5218 | 4.9841 | 785 | 0.8166 | 0.7429 | 0.4122 | 0.4146 | 0.4115 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0