--- library_name: transformers license: cc-by-4.0 base_model: l3cube-pune/indic-sentence-bert-nli tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: indic-sentence-bert-nli-roman-urdu-binary results: [] --- # indic-sentence-bert-nli-roman-urdu-binary This model is a fine-tuned version of [l3cube-pune/indic-sentence-bert-nli](https://huggingface.co/l3cube-pune/indic-sentence-bert-nli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2789 - Accuracy: 0.9061 - Precision: 0.9058 - Recall: 0.9055 - F1: 0.9057 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4984 | 0.9912 | 56 | 0.4611 | 0.8452 | 0.8486 | 0.8489 | 0.8452 | | 0.3582 | 2.0 | 113 | 0.3373 | 0.8826 | 0.8843 | 0.8802 | 0.8816 | | 0.2724 | 2.9912 | 169 | 0.2869 | 0.8901 | 0.8894 | 0.8901 | 0.8897 | | 0.2093 | 4.0 | 226 | 0.2754 | 0.8926 | 0.8922 | 0.8920 | 0.8921 | | 0.1622 | 4.9912 | 282 | 0.2980 | 0.8989 | 0.9016 | 0.8961 | 0.8978 | | 0.1235 | 6.0 | 339 | 0.3167 | 0.8889 | 0.8883 | 0.8884 | 0.8884 | | 0.1125 | 6.9912 | 395 | 0.3369 | 0.8939 | 0.8973 | 0.8907 | 0.8926 | | 0.0811 | 8.0 | 452 | 0.3535 | 0.8914 | 0.8906 | 0.8918 | 0.8911 | | 0.0797 | 8.9912 | 508 | 0.3833 | 0.8914 | 0.8919 | 0.8898 | 0.8906 | | 0.0585 | 9.9115 | 560 | 0.3809 | 0.8926 | 0.8924 | 0.8918 | 0.8920 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0