--- library_name: transformers license: cc-by-4.0 base_model: l3cube-pune/indic-sentence-bert-nli tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: indic-sentence-bert-nli-profanity-mr results: [] --- # indic-sentence-bert-nli-profanity-mr This model is a fine-tuned version of [l3cube-pune/indic-sentence-bert-nli](https://huggingface.co/l3cube-pune/indic-sentence-bert-nli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4716 - Accuracy: 0.9035 - Precision: 0.4517 - Recall: 0.5 - F1: 0.4746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5063 | 0.9836 | 30 | 0.4867 | 0.8819 | 0.4410 | 0.5 | 0.4686 | | 0.3827 | 2.0 | 61 | 0.3841 | 0.8819 | 0.4410 | 0.5 | 0.4686 | | 0.331 | 2.9836 | 91 | 0.3633 | 0.8819 | 0.4410 | 0.5 | 0.4686 | | 0.323 | 4.0 | 122 | 0.3648 | 0.8819 | 0.4410 | 0.5 | 0.4686 | | 0.295 | 4.9836 | 152 | 0.3657 | 0.8819 | 0.4410 | 0.5 | 0.4686 | | 0.3048 | 6.0 | 183 | 0.3668 | 0.8819 | 0.4410 | 0.5 | 0.4686 | | 0.3168 | 6.9836 | 213 | 0.3667 | 0.8819 | 0.4410 | 0.5 | 0.4686 | | 0.3112 | 8.0 | 244 | 0.3666 | 0.8819 | 0.4410 | 0.5 | 0.4686 | | 0.2971 | 8.9836 | 274 | 0.3663 | 0.8819 | 0.4410 | 0.5 | 0.4686 | | 0.3009 | 9.8361 | 300 | 0.3662 | 0.8819 | 0.4410 | 0.5 | 0.4686 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0