--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: id split: test args: id metrics: - name: Wer type: wer value: 35.068707922161764 --- # openai/whisper-tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7324 - Wer: 35.0687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1679 | 9.02 | 1000 | 0.5371 | 33.4179 | | 0.0146 | 19.02 | 2000 | 0.6410 | 34.7782 | | 0.0049 | 29.01 | 3000 | 0.6919 | 35.0272 | | 0.0029 | 39.01 | 4000 | 0.7211 | 34.8335 | | 0.0023 | 49.01 | 5000 | 0.7324 | 35.0687 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2