#!/usr/bin/env python3 import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline, Wav2Vec2ForCTC, Wav2Vec2Processor, set_seed from pyctcdecode import build_ctcdecoder from multiprocessing import Pool class KenLM: def __init__(self, tokenizer, model_name, unigrams=None, num_workers=8, beam_width=128): self.num_workers = num_workers self.beam_width = beam_width vocab_dict = tokenizer.get_vocab() self.vocabulary = [x[0] for x in sorted(vocab_dict.items(), key=lambda x: x[1], reverse=False)] self.vocabulary = self.vocabulary[:-1] self.decoder = build_ctcdecoder(self.vocabulary, model_name, unigrams=unigrams) @staticmethod def lm_postprocess(text): return ' '.join([x if len(x) > 1 else "" for x in text.split()]).strip() def decode(self, logits): probs = logits.cpu().numpy() # probs = logits.numpy() with Pool(self.num_workers) as pool: text = self.decoder.decode_batch(pool, probs) text = [KenLM.lm_postprocess(x) for x in text] return text def log_results(result: Dataset, args: Dict[str, str]): """DO NOT CHANGE. This function computes and logs the result metrics.""" log_outputs = args.log_outputs dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split]) # load metric wer = load_metric("wer") cer = load_metric("cer") # compute metrics wer_result = wer.compute(references=result["target"], predictions=result["prediction"]) cer_result = cer.compute(references=result["target"], predictions=result["prediction"]) # print & log results result_str = f"WER: {wer_result}\n" f"CER: {cer_result}" print(result_str) with open(f"{dataset_id}_eval_results.txt", "w") as f: f.write(result_str) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: pred_file = f"log_{dataset_id}_predictions.txt" target_file = f"log_{dataset_id}_targets.txt" with open(pred_file, "w") as p, open(target_file, "w") as t: # mapping function to write output def write_to_file(batch, i): p.write(f"{i}" + "\n") p.write(batch["prediction"] + "\n") t.write(f"{i}" + "\n") t.write(batch["target"] + "\n") result.map(write_to_file, with_indices=True) def normalize_text(text: str) -> str: """DO ADAPT FOR YOUR USE CASE. this function normalizes the target text.""" chars_to_ignore_regex = '[,?.!-;:""%\'"\'\'`…’»«‘“”�éû]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training text = re.sub(chars_to_ignore_regex, "", text.lower()) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! token_sequences_to_ignore = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: text = " ".join(text.split(t)) return text def main(args): # load dataset dataset = load_dataset(args.dataset, args.config, data_dir=args.data_dir, split=args.split, use_auth_token=True) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id) sampling_rate = feature_extractor.sampling_rate # resample audio dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate)) # load eval pipeline if args.device is None: args.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') set_seed(42) # set the random seed to have reproducible result. processor = Wav2Vec2Processor.from_pretrained(args.model_id) model = Wav2Vec2ForCTC.from_pretrained(args.model_id) model.to(args.device) kenlm = KenLM(processor.tokenizer, "language_model/5gram.bin", unigrams="language_model/unigrams.txt") # map function to decode audio def map_to_pred(batch): inputs = processor(batch["audio"]["array"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(args.device), attention_mask=inputs.attention_mask.to(args.device)).logits prediction = kenlm.decode(logits) batch["prediction"] = prediction batch["target"] = normalize_text(batch["sentence"]) return batch # run inference on all examples result = dataset.map(map_to_pred, remove_columns=dataset.column_names) # compute and log_results # do not change function below log_results(result, args) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--data_dir", type=str, required=False, default=None, help="The directory contains the dataset") parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) args = parser.parse_args() main(args)