--- datasets: - cahya/instructions-all license: bigscience-bloom-rail-1.0 language: - de - en - es - fr - hi - id - ja - ms - pt - ru - th - vi - zh pipeline_tag: text-generation widget: - text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous review as positive, neutral or negative?" example_title: "zh-en sentiment" - text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?" example_title: "zh-zh sentiment" - text: "Suggest at least five related search terms to \"Mạng neural nhân tạo\"." example_title: "vi-en query" - text: "Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels»." example_title: "fr-fr query" - text: "Explain in a sentence in Telugu what is backpropagation in neural networks." example_title: "te-en qa" - text: "Why is the sky blue?" example_title: "en-en qa" - text: "Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is \"Heroes Come in All Shapes and Sizes\". Story (in Spanish):" example_title: "es-en fable" - text: "Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is \"Violence is the last refuge of the incompetent\". Fable (in Hindi):" example_title: "hi-en fable" --- # Bloomz-7b1-instruct This is Bloomz-7b1-mt model fine-tuned with multilingual instruction dataset and using Peft Lora fine-tuning. Following languages are supported: - English - German - French - Spanish - Hindi - Indonesian - Japanese - Malaysian - Portuguese - Russian - Thai - Vietnamese - Chinese ## Usage Following is the code to do the inference using this model: ``` import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig peft_model_id = "cahya/bloomz-7b1-instruct" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) batch = tokenizer("User: How old is the universe?\nAssistant: ", return_tensors='pt').to(0) with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=200, min_length=50, do_sample=True, top_k=40, top_p=0.9, temperature=0.2, repetition_penalty=1.2, num_return_sequences=1) print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True)) ```