--- license: apache-2.0 license_link: https://choosealicense.com/licenses/apache-2.0/ base_model: - TucanoBR/Tucano-2b4-Instruct pipeline_tag: text-generation maintainer: Alessandro de Oliveira Faria - CABELO --- An illustration of a Tucano bird showing vibrant colors like yellow, orange, blue, green, and black. Maintainer: **Alessandro de Oliveira Faria - CABELO** # Tucano-2b4-Instruct-fp16-ov * Model creator: [TucanoBR](https://huggingface.co/TucanoBR) * Original model: [Tucano-2b4-Instruct](https://huggingface.co/TucanoBR/Tucano-2b4-Instruct) ## Description **Tucano OpenVINO** is the version of the Tucano model ported to Intel openVINO inference technology. **[Tucano](https://huggingface.co/TucanoBR)** is a series of decoder-transformers natively pretrained in Portuguese. All Tucano models were trained on **[GigaVerbo](https://huggingface.co/datasets/TucanoBR/GigaVerbo)**, a concatenation of deduplicated Portuguese text corpora amounting to 200 billion tokens. Read our preprint [here](https://arxiv.org/abs/2411.07854). Read our preprint here. # Usage We provide a reference implementation of `Tucano OpenVINO`, as well as sampling code, in a dedicated [github repository](https://github.com/cabelo/Tucano-2b4-Instruct-openvino). ## Compatibility The provided OpenVINO™ IR model is compatible with: * OpenVINO version 2024.5.0 and higher * Optimum Intel 1.21.0 and higher ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: ``` pip install optimum[openvino] ``` 2. Run model inference: ``` from transformers import AutoTokenizer from optimum.intel.openvino import OVModelForCausalLM model_id = "cabelo/Tucano-2b4-Instruct-fp16-ov" tokenizer = AutoTokenizer.from_pretrained(model_id) model = OVModelForCausalLM.from_pretrained(model_id) inputs = tokenizer("O que é Carnaval?", return_tensors="pt") outputs = model.generate(**inputs, max_length=200) text = tokenizer.batch_decode(outputs)[0] print(text) ``` For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html). ## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai) 1. Install packages required for using OpenVINO GenAI. ``` pip install openvino-genai huggingface_hub ``` 2. Download model from HuggingFace Hub ``` import huggingface_hub as hf_hub model_id = "cabelo/Tucano-2b4-Instruct-fp16-ov" model_path = "Tucano-2b4-Instruct-fp16-ov" hf_hub.snapshot_download(model_id, local_dir=model_path) ``` 3. Run model inference: ``` import openvino_genai as ov_genai device = "CPU" pipe = ov_genai.LLMPipeline(model_path, device) print(pipe.generate("O que é OpenVINO?", max_length=200)) ``` More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples) ## Limitations Check the original model card for [original model card](https://huggingface.co/google/gemma-2-9b-it) for limitations. ## Legal information The original model is distributed under [gemma](https://ai.google.dev/gemma/terms) license. More details can be found in [original model card](https://huggingface.co/google/gemma-2-9b-it). ## Disclaimer Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.