--- license: other license_name: deepseek license_link: LICENSE --- # deepseek-coder-7b-instruct-v1.5-RK3588-1.1.1 This version of deepseek-coder-7b-instruct-v1.5 has been converted to run on the RK3588 NPU using {'w8a8_g256', 'w8a8_g128'} quantization. This model has been optimized with the following LoRA: Compatible with RKLLM version: 1.1.1 ###Useful links: [Official RKLLM GitHub](https://github.com/airockchip/rknn-llm) [RockhipNPU Reddit](https://reddit.com/r/RockchipNPU) [EZRKNN-LLM](https://github.com/Pelochus/ezrknn-llm/) Pretty much anything by these folks: [marty1885][https://github.com/marty1885] and [happyme531](https://huggingface.co/happyme531) # Original Model Card for base model, deepseek-coder-7b-instruct-v1.5, below:

DeepSeek Coder

[🏠Homepage] | [🤖 Chat with DeepSeek Coder] | [Discord] | [Wechat(微信)]


### 1. Introduction of Deepseek-Coder-7B-Instruct v1.5 Deepseek-Coder-7B-Instruct-v1.5 is continue pre-trained from Deepseek-LLM 7B on 2T tokens by employing a window size of 4K and next token prediction objective, and then fine-tuned on 2B tokens of instruction data. - **Home Page:** [DeepSeek](https://deepseek.com/) - **Repository:** [deepseek-ai/deepseek-coder](https://github.com/deepseek-ai/deepseek-coder) - **Chat With DeepSeek Coder:** [DeepSeek-Coder](https://coder.deepseek.com/) ### 2. Evaluation Results DeepSeek Coder ### 3. How to Use Here give some examples of how to use our model. #### Chat Model Inference ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5", trust_remote_code=True).cuda() messages=[ { 'role': 'user', 'content': "write a quick sort algorithm in python."} ] inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)) ``` ### 4. License This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use. See the [LICENSE-MODEL](https://github.com/deepseek-ai/deepseek-coder/blob/main/LICENSE-MODEL) for more details. ### 5. Contact If you have any questions, please raise an issue or contact us at [service@deepseek.com](mailto:service@deepseek.com).