# ChatTS-14B Model `ChatTS` focuses on **Understanding and Reasoning** about time series, much like what vision/video/audio-MLLMs do. This repo provides code, datasets and model for `ChatTS`: [ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning](https://arxiv.org/pdf/2412.03104). Here is an example of a ChatTS application, which allows users to interact with a LLM to understand and reason about time series data: ![Chat](figures/chat_example.png) ## Usage - This model is fine-tuned on the QWen2.5-14B-Instruct (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) model. For more usage details, please refer to the `README.md` in the ChatTS repository. - An example usage of ChatTS (with `HuggingFace`): ```python from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor import torch import numpy as np # Load the model, tokenizer and processor model = AutoModelForCausalLM.from_pretrained("./ckpt", trust_remote_code=True, device_map=0, torch_dtype='float16') tokenizer = AutoTokenizer.from_pretrained("./ckpt", trust_remote_code=True) processor = AutoProcessor.from_pretrained("./ckpt", trust_remote_code=True, tokenizer=tokenizer) # Create time series and prompts timeseries = np.sin(np.arange(256) / 10) * 5.0 timeseries[100:] -= 10.0 prompt = f"I have a time series length of 256: . Please analyze the local changes in this time series." # Apply Chat Template prompt = f"<|im_start|>system\nYou are a helpful assistant.<|im_end|><|im_start|>user\n{prompt}<|im_end|><|im_start|>assistant\n" # Convert to tensor inputs = processor(text=[prompt], timeseries=[timeseries], padding=True, return_tensors="pt") # Model Generate outputs = model.generate(**inputs, max_new_tokens=300) print(tokenizer.decode(outputs[0][len(inputs['input_ids'][0]):], skip_special_tokens=True)) ``` ## Reference - QWen2.5-14B-Instruct (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) - transformers (https://github.com/huggingface/transformers.git) - [ChatTS Paper](https://arxiv.org/pdf/2412.03104) ## License This model is licensed under the [Apache License 2.0](LICENSE). ## Cite ``` @article{xie2024chatts, title={ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning}, author={Xie, Zhe and Li, Zeyan and He, Xiao and Xu, Longlong and Wen, Xidao and Zhang, Tieying and Chen, Jianjun and Shi, Rui and Pei, Dan}, journal={arXiv preprint arXiv:2412.03104}, year={2024} } ```