--- license: cc-by-sa-4.0 base_model: nlpaueb/legal-bert-small-uncased tags: - generated_from_keras_callback model-index: - name: bubai567/nifty_bert results: [] --- # bubai567/nifty_bert This model is a fine-tuned version of [nlpaueb/legal-bert-small-uncased](https://huggingface.co/nlpaueb/legal-bert-small-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0147 - Train Accuracy: 0.9962 - Validation Loss: 0.0152 - Validation Accuracy: 0.9964 - Epoch: 1 ## Model description This model is fine-tuned on Nifty 30-minute interval close prices from 2023-06-30T09:15:00+05:30 to 2023-09-08T15:29:00+05:30 IST. To predict the next 30-minute direction, I made a dataset where each sample contains 32 elements of z-score peak detection, which is obtained from https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data. While predicting from it, I tend to provide the last 32 elements of peak detection signal, separating them with spaces, e.g., -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0. This is currently under development and does not guarantee optimal results. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3274, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.0372 | 0.9932 | 0.0186 | 0.9963 | 0 | | 0.0147 | 0.9962 | 0.0152 | 0.9964 | 1 | ### Framework versions - Transformers 4.33.1 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3