--- license: cc-by-4.0 library_name: scvi-tools tags: - biology - genomics - single-cell - model_cls_name:SCANVI - modality:rna - annotated:True --- # Description Mouse preimplantation development model spanning early stages of development. The model was trained utilizing single‐cell ANnotation using Variational Inference (scANVI, [Xu et al., 2021]) implemented in [scvi-tools]. In short, scANVI raw single-cell RNA sequencing (scRNA-seq) count matrix - cell by gene, where values represent gene expression measured by counting number of transcribed RNA. # Model Training - [raw dataset](https://zenodo.org/records/13749348/files/01_mouse_reprocessed.h5ad) - [notebook analysis](https://github.com/brickmanlab/proks-salehin-et-al/blob/master/notebooks/15_mouse_scANVI_fix.ipynb) # Metrics Cell type (`ct`) prediction | Metric | Score | |-------------------|---------------------| | Accuracy score | 0.9126746506986028 | | Balanced accuracy | 0.9572872718187365 | | F1 (micro) | 0.9126746506986028 | | F1 (macro) | 0.9201654923575322 | # Model parameters Below we provide settings for scANVI setup `lvae.init_params_["non_kwargs"]` ```json { "n_hidden": 128, "n_latent": 10, "n_layers": 2, "dropout_rate": 0.1, "dispersion": "gene", "gene_likelihood": "nb", "linear_classifier": false } ``` `lvae.adata_manager.registry['setup_args']` ```json { "labels_key": "ct", "unlabeled_category": "Unknown", "layer": "counts", "batch_key": "batch", "size_factor_key": null, "categorical_covariate_keys": null, "continuous_covariate_keys": null } ``` # References Proks, M., Salehin, N. & Brickman, J.M. Deep learning-based models for preimplantation mouse and human embryos based on single-cell RNA sequencing. Nat Methods 22, 207–216 (2025). [https://doi.org/10.1038/s41592-024-02511-3](https://doi.org/10.1038/s41592-024-02511-3) [Xu et al., 2021]: https://www.embopress.org/doi/full/10.15252/msb.20209620 [scvi-tools]: http://scvi-tools.org