--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-eng results: [] --- # speaker-segmentation-fine-tuned-callhome-eng This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome eng dataset. It achieves the following results on the evaluation set: - Loss: 0.4654 - Der: 0.1832 - False Alarm: 0.0599 - Missed Detection: 0.0724 - Confusion: 0.0508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.4455 | 1.0 | 181 | 0.4776 | 0.1948 | 0.0699 | 0.0691 | 0.0558 | | 0.4049 | 2.0 | 362 | 0.4746 | 0.1916 | 0.0590 | 0.0763 | 0.0562 | | 0.3856 | 3.0 | 543 | 0.4631 | 0.1843 | 0.0565 | 0.0754 | 0.0524 | | 0.3796 | 4.0 | 724 | 0.4634 | 0.1834 | 0.0593 | 0.0726 | 0.0515 | | 0.3727 | 5.0 | 905 | 0.4654 | 0.1832 | 0.0599 | 0.0724 | 0.0508 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1