File size: 2,136 Bytes
1fb186e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: mit
base_model: pyannote/segmentation-3.0
tags:
- speaker-diarization
- speaker-segmentation
- generated_from_trainer
datasets:
- diarizers-community/callhome
model-index:
- name: speaker-segmentation-fine-tuned-callhome-eng
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speaker-segmentation-fine-tuned-callhome-eng
This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome eng dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4654
- Der: 0.1832
- False Alarm: 0.0599
- Missed Detection: 0.0724
- Confusion: 0.0508
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:|
| 0.4455 | 1.0 | 181 | 0.4776 | 0.1948 | 0.0699 | 0.0691 | 0.0558 |
| 0.4049 | 2.0 | 362 | 0.4746 | 0.1916 | 0.0590 | 0.0763 | 0.0562 |
| 0.3856 | 3.0 | 543 | 0.4631 | 0.1843 | 0.0565 | 0.0754 | 0.0524 |
| 0.3796 | 4.0 | 724 | 0.4634 | 0.1834 | 0.0593 | 0.0726 | 0.0515 |
| 0.3727 | 5.0 | 905 | 0.4654 | 0.1832 | 0.0599 | 0.0724 | 0.0508 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|