--- license: other license_name: bria-rmbg-1.4 license_link: https://bria.ai/bria-huggingface-model-license-agreement/ pipeline_tag: image-segmentation tags: - remove background - background - background-removal - Pytorch - vision - legal liability - transformers extra_gated_prompt: This model weights by BRIA AI can be obtained after a commercial license is agreed upon. Fill in the form below and we reach out to you. extra_gated_fields: Name: text Company/Org name: text Org Type (Early/Growth Startup, Enterprise, Academy): text Role: text Country: text Email: text By submitting this form, I agree to BRIA’s Privacy policy and Terms & conditions, see links below: checkbox --- # BRIA Background Removal v1.4 Model Card RMBG v1.4 is our state-of-the-art background removal model, designed to effectively separate foreground from background in a range of categories and image types. This model has been trained on a carefully selected dataset, which includes: general stock images, e-commerce, gaming, and advertising content, making it suitable for commercial use cases powering enterprise content creation at scale. The accuracy, efficiency, and versatility currently rival leading source-available models. It is ideal where content safety, legally licensed datasets, and bias mitigation are paramount. Developed by BRIA AI, RMBG v1.4 is available as a source-available model for non-commercial use. [CLICK HERE FOR A DEMO](https://huggingface.co/spaces/briaai/BRIA-RMBG-1.4) ![examples](t4.png) ### Model Description - **Developed by:** [BRIA AI](https://bria.ai/) - **Model type:** Background Removal - **License:** [bria-rmbg-1.4](https://bria.ai/bria-huggingface-model-license-agreement/) - The model is released under a Creative Commons license for non-commercial use. - Commercial use is subject to a commercial agreement with BRIA. [Contact Us](https://bria.ai/contact-us) for more information. - **Model Description:** BRIA RMBG 1.4 is a saliency segmentation model trained exclusively on a professional-grade dataset. - **BRIA:** Resources for more information: [BRIA AI](https://bria.ai/) ## Training data Bria-RMBG model was trained with over 12,000 high-quality, high-resolution, manually labeled (pixel-wise accuracy), fully licensed images. Our benchmark included balanced gender, balanced ethnicity, and people with different types of disabilities. For clarity, we provide our data distribution according to different categories, demonstrating our model’s versatility. ### Distribution of images: | Category | Distribution | | -----------------------------------| -----------------------------------:| | Objects only | 45.11% | | People with objects/animals | 25.24% | | People only | 17.35% | | people/objects/animals with text | 8.52% | | Text only | 2.52% | | Animals only | 1.89% | | Category | Distribution | | -----------------------------------| -----------------------------------------:| | Photorealistic | 87.70% | | Non-Photorealistic | 12.30% | | Category | Distribution | | -----------------------------------| -----------------------------------:| | Non Solid Background | 52.05% | | Solid Background | 47.95% | Category | Distribution | | -----------------------------------| -----------------------------------:| | Single main foreground object | 51.42% | | Multiple objects in the foreground | 48.58% | ## Qualitative Evaluation ![examples](results.png) ## Architecture RMBG v1.4 is developed on the [IS-Net](https://github.com/xuebinqin/DIS) enhanced with our unique training scheme and proprietary dataset. These modifications significantly improve the model’s accuracy and effectiveness in diverse image-processing scenarios. ## Installation ```bash wget https://huggingface.co/briaai/RMBG-1.4/resolve/main/requirements.txt && pip install -qr requirements.txt ``` ## Usage ```python # How to use either load the model ```python from transformers import AutoModelForImageSegmentation model = AutoModelForImageSegmentation.from_pretrained("briaai/RMBG-1.4",trust_remote_code=True) ``` or load the pipeline ```python from transformers import pipeline pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True) numpy_mask = pipe("img_path") # outputs numpy mask pipe("image_path",out_name="myout.png") # applies mask and saves the extracted image as `myout.png` ``` # parameters : for the pipeline you can use the following parameters : * `model_input_size` : default to [1024,1024] * `out_name` : if specified it will use the numpy mask to extract the image and save it using the `out_name` * `preprocess_image` : original method created by briaai * `postprocess_image` : original method created by briaai ```