from transformers import PretrainedConfig class BertItalianoConfig(PretrainedConfig): model_type="BertItaliano" def __init__( self, attention_probs_dropout_prob: float = 0.1, gradient_checkpointing: bool = False, hidden_act="gelu", hidden_dropout_prob: float = 0.1, hidden_size: int = 768, initializer_range: float = 0.02, intermediate_size: int = 3072, layer_norm_eps: float = 1e-12, max_position_embeddings: int = 512, num_attention_heads: int = 12, num_hidden_layers: int = 12, pad_token_id: int = 0, position_embedding_type="absolute", transformers_version="4.10.3", torch_dtype="float32", type_vocab_size: int = 2, use_cache: bool = True, vocab_size: int = 32102, **kwargs, ): self.attention_probs_dropout_prob = attention_probs_dropout_prob self.gradient_checkpointing = gradient_checkpointing self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.hidden_size = hidden_size self.initializer_range = initializer_range self.intermediate_size = intermediate_size self.layer_norm_eps = layer_norm_eps self.max_position_embeddings = max_position_embeddings self.num_attention_heads = num_attention_heads self.num_hidden_layers = num_hidden_layers self.pad_token_id = pad_token_id self.position_embedding_type = position_embedding_type self.transformers_version = transformers_version self.torch_dtype = torch_dtype self.type_vocab_size = type_vocab_size self.use_cache = use_cache self.vocab_size = vocab_size super().__init__(**kwargs)