{ "policy_class": { ":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1d19845ed0>" }, "verbose": 1, "policy_kwargs": { ":type:": "", ":serialized:": "gAWVaAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoSyBLEGWMAnZmlF2UKEsgSxBldWF1Lg==", "activation_fn": "", "net_arch": [ { "pi": [ 32, 16 ], "vf": [ 32, 16 ] } ] }, "observation_space": { ":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [ 8 ], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null }, "n_envs": 32, "num_timesteps": 5079040, "_total_timesteps": 5055904, "_num_timesteps_at_start": 2555904, "seed": null, "action_noise": null, "start_time": 1651876384.2080295, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": { ":type:": "", ":serialized:": "gAWVfwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjE8vaG9tZS9icmFkLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4=" }, "_last_obs": { ":type:": "", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAGYGM7vC6bM/+IwGvliUBr6AhH061hFdvAAAAAAAAAAAAKorvVqiOD4DUBk+HI0dv4XjZrtG8Ro+AAAAAAAAAACzM6u9lXOdP/uKXL5GxjK/SAk2vp0L870AAAAAAAAAALN/BT1SRf6766q5vB+Cqjx7E2y9bmWNPQAAgD8AAIA/DUAMPrvlij8nwqc+v8Aev5Udjj53UJo9AAAAAAAAAABaHJk9+JeWP8BKvj7qLTy/dPD9PY7ddD4AAAAAAAAAAIAaDD4RjkI/hZ9iPeWxQ79FIl8+ChKEvQAAAAAAAAAAACpIvY++eLrLUlo2PsIjMdsIRruDq4S1AACAPwAAgD/tlCW+H3SZPhI5nT7flhK/RDFSvnxpvD4AAAAAAAAAAGanM71cDRU+vaddPbO6CL/nbEy9hSO2PQAAAAAAAAAAZtK7PHt0lbr8I7e4d9gGsoRlHbvdEtE3AACAPwAAgD9D11i+/k8+P0wnhL1kzSi//DjFvj2v4zwAAAAAAAAAAM0GFzzhOKC6NlI4s2wCLzBcYcu6J/7KMwAAgD8AAIA/ADtxPSkIDLqiuei7kPj9NGaS+DvWrW+0AACAPwAAgD/NYKc8XDdEuk/GJzRrPVgvKsiauyw2jLMAAIA/AACAPzMtED0Ki64/+usFPvUx2b4Of+09VsGGPQAAAAAAAAAAzQQpO8MtTbpSnDA4AHVDMmZqd7v9OU63AACAPwAAgD9m9Ve9znmVvPe3mT1qE6M8XHTZPIf3RT0AAIA/AACAP1rxGb7Q3eo+UIVdPUooIb/RZIW+oGS4PQAAAAAAAAAAfU9ovuasdD94wXC+FdAzv8/y8L7N8Oy8AAAAAAAAAABGUwi+eh0VP+okD7xhuCC/43+ZvgLekTwAAAAAAAAAAJA7rD7VBpI/uAZuPIBaxL7J6SA/8nf0vQAAAAAAAAAATe6cvWQRtT80CrO+2sCEvsqrKr4utD6+AAAAAAAAAABmgde8FNqEum176rIH5BCw6tQmuxEnsjMAAIA/AACAP4C5Ij41FgM/EJKIvuzdLb8P3RE+Y0pFvgAAAAAAAAAAmveovMNBXbprr2s2OuWSMQDyBDr1No+1AACAPwAAgD+a6XA8aCerP447AT7Rhty+RwAAPbt4mT0AAAAAAAAAAPPRsz2/KjU/YUEkvcLWVL+yKwo+pYrZvQAAAAAAAAAAzQrivBRuoro2y4Y7Qk2juDTq5brNhri3AACAPwAAgD8zFc+9PB+ZP/Z3Ob5NCFu/c3M8vuRYAr4AAAAAAAAAAK1Ygj6jpJg/MKKVPi9p0r6FNQQ/8F52PQAAAAAAAAAAgMftPap2FD4S2o++AtP5vtCarzwe4Ae+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu" }, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4=" }, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004576036253852944, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfA4sR8hKckCUhpRSlIwBbJRLo4wBdJRHQMkxjjwH7gt1fZQoaAZoCWgPQwjfGAKA4xNxQJSGlFKUaBVLqmgWR0DJMZLh73PBdX2UKGgGaAloD0MIBhA+lKj0cECUhpRSlGgVS6RoFkdAyTGVYNAkcHV9lChoBmgJaA9DCCfcK/OWFXJAlIaUUpRoFUuNaBZHQMkxn78FY+11fZQoaAZoCWgPQwg3NdB8zj09QJSGlFKUaBVLaGgWR0DJMaHa11GLdX2UKGgGaAloD0MIAK5kxwbuc0CUhpRSlGgVS89oFkdAyTGhwMH8j3V9lChoBmgJaA9DCCgLX1+rKnFAlIaUUpRoFUudaBZHQMkxon3+MqB1fZQoaAZoCWgPQwjYYUz6uy1xQJSGlFKUaBVLjWgWR0DJMaZxvNu+dX2UKGgGaAloD0MIi96pgHslckCUhpRSlGgVS69oFkdAyTGorf+CLHV9lChoBmgJaA9DCPT+P07YmXFAlIaUUpRoFUuCaBZHQMkxuundfsx1fZQoaAZoCWgPQwgz/n3GBa9xQJSGlFKUaBVLsGgWR0DJMbw+nqFAdX2UKGgGaAloD0MIJ0wYzcoScECUhpRSlGgVS5hoFkdAyTG8uM+/xnV9lChoBmgJaA9DCNTvwtbsuXJAlIaUUpRoFUvLaBZHQMkxvkyk9EF1fZQoaAZoCWgPQwjBHhMpjbBxQJSGlFKUaBVLo2gWR0DJMb8Od5IIdX2UKGgGaAloD0MItRt9zAffckCUhpRSlGgVS8VoFkdAyTG/yMDOknV9lChoBmgJaA9DCHkDzHxHRXFAlIaUUpRoFUu3aBZHQMkxxkpZwGZ1fZQoaAZoCWgPQwgVAySawB5xQJSGlFKUaBVLp2gWR0DJMcqvX9R8dX2UKGgGaAloD0MIFqdaC3OlcECUhpRSlGgVS5loFkdAyTHSQ0XP7nV9lChoBmgJaA9DCPZiKCea0nBAlIaUUpRoFUugaBZHQMkx1Ryn1nN1fZQoaAZoCWgPQwg8pYP1f3VxQJSGlFKUaBVLumgWR0DJMdyADq4ZdX2UKGgGaAloD0MIbXL4pNPZc0CUhpRSlGgVS9hoFkdAyTHdzhgmZ3V9lChoBmgJaA9DCEvMs5JWPXJAlIaUUpRoFUu7aBZHQMkx3+9SMtN1fZQoaAZoCWgPQwgyrU1j+35zQJSGlFKUaBVLs2gWR0DJMeFC3PRidX2UKGgGaAloD0MIBRkBFU54c0CUhpRSlGgVS9doFkdAyTHh6iTMaHV9lChoBmgJaA9DCF70FaQZe3BAlIaUUpRoFUuTaBZHQMkx6M72crl1fZQoaAZoCWgPQwjOVIhH4ot0QJSGlFKUaBVL2mgWR0DJMepL9MsZdX2UKGgGaAloD0MIgH9KlWhMckCUhpRSlGgVS81oFkdAyTHtW1c+q3V9lChoBmgJaA9DCHQHsTMFSXBAlIaUUpRoFUu1aBZHQMkx8l/pdKN1fZQoaAZoCWgPQwgJGF3enOBxQJSGlFKUaBVLyWgWR0DJMfalFc6edX2UKGgGaAloD0MICHJQwsw+dECUhpRSlGgVS69oFkdAyTH3y5qdpnV9lChoBmgJaA9DCJSJWwUx63FAlIaUUpRoFUuMaBZHQMkx/FFMIu51fZQoaAZoCWgPQwjlszwPrvRxQJSGlFKUaBVLoWgWR0DJMf3UQTVUdX2UKGgGaAloD0MIlpLlJFQ6cUCUhpRSlGgVS61oFkdAyTH+piI+GHV9lChoBmgJaA9DCGjQ0D+Bt3FAlIaUUpRoFUu4aBZHQMkyAnmq5sl1fZQoaAZoCWgPQwhjQswllaZyQJSGlFKUaBVLnmgWR0DJMgcx20RfdX2UKGgGaAloD0MIllrvN9rQcUCUhpRSlGgVS7xoFkdAyTIIF/x2CHV9lChoBmgJaA9DCAoS290DXXFAlIaUUpRoFUufaBZHQMkyDsVLzwt1fZQoaAZoCWgPQwhMT1jigWlyQJSGlFKUaBVLwmgWR0DJMhE4cWCVdX2UKGgGaAloD0MIF2U2yGT1cECUhpRSlGgVS4poFkdAyTIXLqUu+XV9lChoBmgJaA9DCJDZWfRO2HFAlIaUUpRoFUuyaBZHQMkyFzDXOGF1fZQoaAZoCWgPQwjz4y8tKoNxQJSGlFKUaBVLtGgWR0DJMhzYmLLqdX2UKGgGaAloD0MIQiRDjq1BcECUhpRSlGgVS5hoFkdAyTIfZ/Tb4HV9lChoBmgJaA9DCHyeP23UJ3NAlIaUUpRoFUvCaBZHQMkyH2lEZzh1fZQoaAZoCWgPQwiqDU5EvyhvQJSGlFKUaBVLnGgWR0DJMjKpkwvhdX2UKGgGaAloD0MIjILg8e1LckCUhpRSlGgVS7ZoFkdAyTI2NpdrwnV9lChoBmgJaA9DCMhCdAjc+3FAlIaUUpRoFUu4aBZHQMkyOwjt5Ut1fZQoaAZoCWgPQwjikA2ki4FyQJSGlFKUaBVLvmgWR0DJMj6ojv/jdX2UKGgGaAloD0MIcsXFUXnGcECUhpRSlGgVS6FoFkdAyTI/pAUtZnV9lChoBmgJaA9DCCR7hJqhUXJAlIaUUpRoFUu0aBZHQMkyP3Dm8ul1fZQoaAZoCWgPQwgVyVcCKfpyQJSGlFKUaBVLwGgWR0DJMj9lAeJYdX2UKGgGaAloD0MIUWaDTPJZckCUhpRSlGgVS7VoFkdAyTJQQpWmxnV9lChoBmgJaA9DCJpAEYsYqG9AlIaUUpRoFUuTaBZHQMkyUkvK2a51fZQoaAZoCWgPQwiwNzEk5w5yQJSGlFKUaBVLq2gWR0DJMlI7DEWJdX2UKGgGaAloD0MIx/DYzyKHcUCUhpRSlGgVS6loFkdAyTJTBciW3XV9lChoBmgJaA9DCKw2/696dnBAlIaUUpRoFUulaBZHQMkyWb7CSA91fZQoaAZoCWgPQwgQzNHjN1NzQJSGlFKUaBVLtGgWR0DJMlvgvUSadX2UKGgGaAloD0MIS+guiTOvc0CUhpRSlGgVS7RoFkdAyTJcinHeanV9lChoBmgJaA9DCONve4IEi3BAlIaUUpRoFUuVaBZHQMkyYzhHbyp1fZQoaAZoCWgPQwj3BfTC3T1wQJSGlFKUaBVLoWgWR0DJMmWPBBRidX2UKGgGaAloD0MI6MByhIySc0CUhpRSlGgVS81oFkdAyTJoJIlMRHV9lChoBmgJaA9DCAg+BivOmXBAlIaUUpRoFUuvaBZHQMkyandO6/Z1fZQoaAZoCWgPQwiTyamd4eNvQJSGlFKUaBVLoWgWR0DJMm0L0BfbdX2UKGgGaAloD0MI0ZUIVH8pc0CUhpRSlGgVS8hoFkdAyTJylgtvoHV9lChoBmgJaA9DCJZ7gVmhWXJAlIaUUpRoFUu6aBZHQMkydwXQ+ll1fZQoaAZoCWgPQwgA4q5ehVJyQJSGlFKUaBVLtGgWR0DJMnoePq9odX2UKGgGaAloD0MILGNDNzvpckCUhpRSlGgVS7RoFkdAyTJ+ZDRc/3V9lChoBmgJaA9DCCNKe4MvAXFAlIaUUpRoFUutaBZHQMkyf+LNwBJ1fZQoaAZoCWgPQwhbzTrj+8VvQJSGlFKUaBVLnGgWR0DJMoG6/ZdwdX2UKGgGaAloD0MI+Uz2z9O4cUCUhpRSlGgVS7NoFkdAyTKC6vJRwnV9lChoBmgJaA9DCCocQSpF23JAlIaUUpRoFUupaBZHQMkyhAa3qiZ1fZQoaAZoCWgPQwi1xMpoJGZyQJSGlFKUaBVLmGgWR0DJMob1qWTpdX2UKGgGaAloD0MIUkZcAJoUckCUhpRSlGgVS7NoFkdAyTKL4lhPTHV9lChoBmgJaA9DCNMzvcRYREdAlIaUUpRoFUtfaBZHQMkykV/Ue+51fZQoaAZoCWgPQwjcZb/utKdyQJSGlFKUaBVLq2gWR0DJMpO8brC4dX2UKGgGaAloD0MI007N5Ybkc0CUhpRSlGgVS7VoFkdAyTKX9AHE/HV9lChoBmgJaA9DCOLJbma05XJAlIaUUpRoFUu+aBZHQMkymIfSx7l1fZQoaAZoCWgPQwgcBvNXSEZyQJSGlFKUaBVLiGgWR0DJMpoEZBLPdX2UKGgGaAloD0MIFsH/VjLtcECUhpRSlGgVS6loFkdAyTKwcUdq+XV9lChoBmgJaA9DCGMJa2Ms33FAlIaUUpRoFUu8aBZHQMkysgfdRBN1fZQoaAZoCWgPQwiocASpVNtwQJSGlFKUaBVLr2gWR0DJMrTrVvuPdX2UKGgGaAloD0MImX/0TZrOckCUhpRSlGgVS8BoFkdAyTK32wFC9nV9lChoBmgJaA9DCPG4qBbR3nJAlIaUUpRoFUuPaBZHQMkyvBRyfcx1fZQoaAZoCWgPQwgS+MPPv6FzQJSGlFKUaBVLy2gWR0DJMsQM2FWXdX2UKGgGaAloD0MIw7rx7gjzc0CUhpRSlGgVS8poFkdAyTLHwLmZE3V9lChoBmgJaA9DCJlJ1At+TXBAlIaUUpRoFUulaBZHQMkyyQ2MsH11fZQoaAZoCWgPQwhtNlZiHslyQJSGlFKUaBVLmmgWR0DJMsty1eBydX2UKGgGaAloD0MIiPVGrfCJcUCUhpRSlGgVS7poFkdAyTLRFLnLaHV9lChoBmgJaA9DCMWrrG0K625AlIaUUpRoFUuMaBZHQMky0dsBQvZ1fZQoaAZoCWgPQwj5ugz/qa5yQJSGlFKUaBVLwmgWR0DJMtPozN2UdX2UKGgGaAloD0MI8P0N2mtkckCUhpRSlGgVS8ZoFkdAyTLYvGIbfnV9lChoBmgJaA9DCMxFfCfmNXRAlIaUUpRoFUu4aBZHQMky2Mw+MZR1fZQoaAZoCWgPQwhq+uyAq3ByQJSGlFKUaBVLpGgWR0DJMtoK8cuKdX2UKGgGaAloD0MI7WXbaWs7c0CUhpRSlGgVS6NoFkdAyTLcBGx2S3V9lChoBmgJaA9DCKlr7X2qUHJAlIaUUpRoFUu6aBZHQMky43u/k/91fZQoaAZoCWgPQwjH1ciuNBZwQJSGlFKUaBVLmGgWR0DJMuctI066dX2UKGgGaAloD0MIJxWNtb9jckCUhpRSlGgVS8BoFkdAyTLpnjABUHV9lChoBmgJaA9DCPoMqDfjJ3FAlIaUUpRoFUuqaBZHQMky7gq3Eyd1fZQoaAZoCWgPQwi1/wHWKpZxQJSGlFKUaBVLp2gWR0DJMvBZEDyOdX2UKGgGaAloD0MINjy9Uhblb0CUhpRSlGgVS6doFkdAyTL0189fTnV9lChoBmgJaA9DCG+5+rGJ4HFAlIaUUpRoFUuvaBZHQMky+y6tknV1ZS4=" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 1240, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": { ":type:": "", ":serialized:": "gAWVfwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjE8vaG9tZS9icmFkLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4=" }, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null }