--- license: apache-2.0 base_model: distilbert/distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-cased results: [] --- # distilbert-base-cased This model is a fine-tuned version of [distilbert/distilbert-base-cased](https://huggingface.co/distilbert/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0910 - Precision: 0.7563 - Recall: 0.7659 - F1: 0.7610 - Accuracy: 0.9763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.151 | 1.0 | 784 | 0.0946 | 0.6986 | 0.7443 | 0.7207 | 0.9711 | | 0.0391 | 2.0 | 1568 | 0.0859 | 0.7446 | 0.7678 | 0.7560 | 0.9750 | | 0.0239 | 3.0 | 2352 | 0.0910 | 0.7563 | 0.7659 | 0.7610 | 0.9763 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2