--- license: apache-2.0 pipeline_tag: fill-mask tags: - fill-mask - transformers - en - ko widget: - text: 대한민국의 수도는 [MASK] 입니다. --- # mdistilbertV2.1 - distilbert-base-multilingual-cased 모델에 [moco-corpus-kowiki2022 말뭉치](https://huggingface.co/datasets/bongsoo/moco-corpus-kowiki2022)(kowiki202206 + MOCOMSYS 추출 3.2M 문장)로 vocab 추가하여 학습 시킨 모델 - **vocab: 152,537개**(기존 bert 모델 vocab(119,548개)에 32,989개 vocab 추가) ## Usage (HuggingFace Transformers) ### 1. MASK 예시 ```python from transformers import AutoTokenizer, AutoModel, DistilBertForMaskedLM import torch import torch.nn.functional as F tokenizer = AutoTokenizer.from_pretrained('bongsoo/mdistilbertV2.1', do_lower_case=False) model = DistilBertForMaskedLM.from_pretrained('bongsoo/mdistilbertV2.1') text = ['한국의 수도는 [MASK] 이다', '에펠탑은 [MASK]에 있다', '충무공 이순신은 [MASK]에 최고의 장수였다'] tokenized_input = tokenizer(text, max_length=128, truncation=True, padding='max_length', return_tensors='pt') outputs = model(**tokenized_input) logits = outputs.logits mask_idx_list = [] for tokens in tokenized_input['input_ids'].tolist(): token_str = [tokenizer.convert_ids_to_tokens(s) for s in tokens] # **위 token_str리스트에서 [MASK] 인덱스를 구함 # => **해당 [MASK] 안덱스 값 mask_idx 에서는 아래 출력하는데 사용됨 mask_idx = token_str.index('[MASK]') mask_idx_list.append(mask_idx) for idx, mask_idx in enumerate(mask_idx_list): logits_pred=torch.argmax(F.softmax(logits[idx]), dim=1) mask_logits_idx = int(logits_pred[mask_idx]) # [MASK]에 해당하는 token 구함 mask_logits_token = tokenizer.convert_ids_to_tokens(mask_logits_idx) # 결과 출력 print('\n') print('*Input: {}'.format(text[idx])) print('*[MASK] : {} ({})'.format(mask_logits_token, mask_logits_idx)) ``` - 결과 ``` *Input: 한국의 수도는 [MASK] 이다 *[MASK] : 서울 (48253) *Input: 에펠탑은 [MASK]에 있다 *[MASK] : 프랑스 (47364) *Input: 충무공 이순신은 [MASK]에 최고의 장수였다 *[MASK] : 임진왜란 (122835) ``` ### 2. 임베딩 예시 - 평균 폴링(mean_pooling) 방식 사용. ([cls 폴링](https://huggingface.co/sentence-transformers/bert-base-nli-cls-token), [max 폴링](https://huggingface.co/sentence-transformers/bert-base-nli-max-tokens)) ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('bongsoo/mdistilbertV2.1') model = AutoModel.from_pretrained('bongsoo/mdistilbertV2.1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) # sklearn 을 이용하여 cosine_scores를 구함 # => 입력값 embeddings 은 (1,768) 처럼 2D 여야 함. from sklearn.metrics.pairwise import paired_cosine_distances, paired_euclidean_distances, paired_manhattan_distances cosine_scores = 1 - (paired_cosine_distances(sentence_embeddings[0].reshape(1,-1), sentence_embeddings[1].reshape(1,-1))) print(f'*cosine_score:{cosine_scores[0]}') ``` - 결과 ``` Sentence embeddings: tensor([[-0.0166, 0.0129, 0.2805, ..., -0.1452, -0.0855, -0.4914], [-0.0973, 0.0845, 0.2841, ..., 0.1996, -0.1497, -0.2990]]) *cosine_score:0.5162007808685303 ``` ## Training **MLM(Masked Langeuage Model) 훈련** - 입력 모델 : distilbert-base-multilingual-cased - 말뭉치 : 훈련 : bongsoo/moco-corpus-kowiki2022(7.6M) , 평가: bongsoo/bongevalsmall - HyperParameter : **LearningRate : 5e-5, epochs: 8, batchsize: 32, max_token_len : 128** - vocab : **152,537개** (기존 119,548 에 32,989 신규 vocab 추가) - 출력 모델 : mdistilbertV2.1 (size: 613MB) - 훈련시간 : 63h/1GPU (24GB/23.9 use) - loss : **훈련loss: 2.203400, 평가loss: 2.972835, perplexity: 23.43**(bong_eval:1,500) - 훈련코드 [여기](https://github.com/kobongsoo/BERT/blob/master/distilbert/distilbert-MLM-Trainer-V1.2.ipynb) 참조
perplexity 평가 코드는 [여기](https://github.com/kobongsoo/BERT/blob/master/distilbert/distilbert-perplexity-eval-V1.2.ipynb) 참조 ## Model Config ``` { "_name_or_path": "../../data11/model/distilbert/mdistilbertV2.1-4", "activation": "gelu", "architectures": [ "DistilBertForMaskedLM" ], "attention_dropout": 0.1, "dim": 768, "dropout": 0.1, "hidden_dim": 3072, "initializer_range": 0.02, "max_position_embeddings": 512, "model_type": "distilbert", "n_heads": 12, "n_layers": 6, "output_past": true, "pad_token_id": 0, "qa_dropout": 0.1, "seq_classif_dropout": 0.2, "sinusoidal_pos_embds": false, "tie_weights_": true, "torch_dtype": "float32", "transformers_version": "4.21.2", "vocab_size": 152537 } ``` ## Citing & Authors bongsoo