--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9718236819360415 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1356 - Accuracy: 0.9718 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5595 | 1.0 | 406 | 0.1957 | 0.9628 | | 0.6314 | 2.0 | 813 | 0.1814 | 0.9654 | | 0.5433 | 3.0 | 1220 | 0.1723 | 0.9658 | | 0.488 | 4.0 | 1627 | 0.1588 | 0.9677 | | 0.5789 | 5.0 | 2033 | 0.1572 | 0.9689 | | 0.4526 | 6.0 | 2440 | 0.1496 | 0.9701 | | 0.4538 | 7.0 | 2847 | 0.1447 | 0.9708 | | 0.447 | 8.0 | 3254 | 0.1414 | 0.9710 | | 0.3809 | 9.0 | 3660 | 0.1385 | 0.9715 | | 0.4515 | 9.98 | 4060 | 0.1356 | 0.9718 | ### Framework versions - Transformers 4.36.1 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0