| from transformers import Text2TextGenerationPipeline, AutoModelForSeq2SeqLM, TFAutoModelForSeq2SeqLM, pipeline, TextGenerationPipeline | |
| import torch | |
| import tensorflow as tf | |
| import numpy as np | |
| import math | |
| class MyTestPipeline(TextGenerationPipeline): | |
| def preprocess(self, text, **kwargs): | |
| prompt = 'Answer the following question/statement in English without any explanation, do not abbreviate names.' | |
| txt = f"<|user|>\n{prompt} {text}\n<|end|>\n<|assistant|>" | |
| return self.tokenizer(txt, return_tensors=self.framework) | |
| def _forward(self, model_inputs, **generate_kwargs): | |
| if self.framework == "pt": | |
| in_b, input_length = model_inputs["input_ids"].shape | |
| elif self.framework == "tf": | |
| in_b, input_length = tf.shape(model_inputs["input_ids"]).numpy() | |
| outputs = self.model.generate(**model_inputs, **generate_kwargs, return_dict_in_generate=True, output_scores=True) | |
| output_ids = outputs.sequences | |
| out_b = output_ids.shape[0] | |
| if self.framework == "pt": | |
| output_ids = output_ids.reshape(in_b, out_b // in_b, *output_ids.shape[1:]) | |
| elif self.framework == "tf": | |
| output_ids = tf.reshape(output_ids, (in_b, out_b // in_b, *output_ids.shape[1:])) | |
| output_sequences = outputs.sequences | |
| output_scores = outputs.scores | |
| return {"input_ids": output_ids.flatten().flatten(), "generated_sequence": [output_sequences], "output_scores": output_scores, 'prompt_text' : ''} | |
| def postprocess(self, model_outputs, **kwargs): | |
| guess_text = super().postprocess(model_outputs)[0]['generated_text'].split('\n')[-1].strip() | |
| transition_scores = self.model.compute_transition_scores(model_outputs['generated_sequence'][0], model_outputs['output_scores'], normalize_logits=True) | |
| log_probs = np.round(np.exp(transition_scores.cpu().numpy()), 3)[0] | |
| guess_prob = np.product(log_probs) | |
| confidence = (math.exp(12*(guess_prob - 0.5))) / (1 + math.exp(12 * (guess_prob - 0.5))) | |
| return {'guess': guess_text, 'confidence': confidence} | |