--- license: mit tags: - generated_from_trainer base_model: microsoft/speecht5_tts model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- # UzbTTS This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5190 ## Model description UZBTTS - bu asason 250 MB Text2Audio datasetga (microsoft/speecht5_tts) modeliga fine-tuned qilindi, natija datasetga yarasha yaxshi. Agar siz buni modelni foydalanishini xoxlasangiz. example: ``` #dastlab run qiling : !pip install transformers datasets from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech processor = SpeechT5Processor.from_pretrained("ai-nightcoder/UZBTTS") model = SpeechT5ForTextToSpeech.from_pretrained("ai-nightcoder/UZBTTS") # *************************************************************************** text = "O‘zbekistonda import qilingan sovitkich, muzlatkich va konditsionerlarni energosamaradorlik bo‘yicha sinovdan o‘tkazish boshlandi. Kun.uz'ga murojaat qilgan importchi tadbirkorlarga ko‘ra, bu yangilik ham vaqt, ham naqd nuqtayi nazaridan yangi xarajatlarga olib kelgan. Kelgusida bunday tekshiruv boshqa turdagi maishiy texnikalarga ham joriy etilishi kutilyapti." inputs = processor(text=text, return_tensors="pt") # *************************************************************************** from datasets import load_dataset embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") import torch # voice clone uchun ham ishlatilsa bo'ladi. speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings) from transformers import SpeechT5HifiGan vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") # **************************************************************************** speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) from IPython.display import Audio Audio(speech, rate=16000) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.479 | 137.93 | 1000 | 0.5174 | | 0.4318 | 275.86 | 2000 | 0.5177 | | 0.4111 | 413.79 | 3000 | 0.5302 | | 0.4081 | 551.72 | 4000 | 0.5190 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1